

TABLE OF CONTENTS

1.	OVE	RVIEW	1
2.	INST	ALLATION	3
	2.1.	7807LR-2/7807LR-2-H CONNECTIONS	4
	2.2.	CARE AND HANDLING OF OPTICAL FIBER	5
		2.2.1. Handling and Connecting Fibers	5
3.	7807	LR-2/7807LR-2-H SPECIFICATIONS	6
	3.1.	RF OUTPUTS	6
	3.2.	OPTICAL INPUTS	6
	3.3.	GENERAL PURPOSE OUTPUTS	6
	3.4.	ELECTRICAL	6
	3.5.	PHYSICAL	6
4.	STA	TUS INDICATORS AND DISPLAYS	7
	4.1.	7807LR-2/7807LR-2-H STATUS INDICATORS	7
5.	JUM	PER POSITIONS	8
	5.1.	7807LR-2/7807LR-2-H JUMPERS AND LEDS	8
	5.2.	SELECTING WHETHER LOCAL FAULTS WILL BE MONITORED BY THE GLOBAL FRAME STATUS	8
	5.3.	CONFIGURING THE MODULE FOR FIRMWARE UPGRADES	9
	5.4.	FACTORY AND BDM JUMPERS	9
	5.5.	GPO JUMPERS	9
6.	DOT	-MATRIX DISPLAY1	0
	6.1.	7807LR-2/7807LR-2-H CONTROLLED PARAMETERS1	5
		 6.1.1. Adjusting the Optical Power Alarm Thresholds	5 5 6 7

7700/7800 MultiFrame Manual 7807LR-2, 7807LR-2-H Dual L-Band/Wideband RF Fiber Receiver

7.

	 6.1.5. Adjusting the AGC Target Level 6.1.6. Enabling/Disabling Squelch Mode 6.1.7. Setting the Card Edge Display Orientation 6.1.8. Resetting Factory Defaults 	17 18 18 18
6.2.	TRANSMITTER CONTROLLABLE PARAMETERS	18
	 6.2.1. Adjusting the RF Input Power Alarm Thresholds 6.2.2. Adjusting the Internal Transmitter Temperature Alarm Thresholds 6.2.3. Adjusting the Input Voltage Alarm Thresholds 6.2.4. Adjusting the LNB Current Alarm Thresholds 	19 19 20 20
6.3.	7807LR-2/7807LR-2-H MONITORED CONDITIONS AND PARAMETERS	21
	6.3.1. Displaying the Input Optical Power6.3.2. Displaying the Output RF Power6.3.3. Displaying the Squelch Status	21 21 21
6.4.	TRANSMITTER MONITORED PARAMETERS	22
	 6.4.1. Displaying the Presence of the Data Signal	
VIST		28
7.1.	WHAT IS VISTALINK _® ?	
	7.1.1. VISTALINK® Monitored Parameters	
	7.1.2. VISTALINK _® Controlled Farameters	

Figures

Figure 1-1: 7807LR-2/7807LR-2-H Block Diagram	. 2
Figure 2-1: 7807LR-2/7807LR-2-H Rear Panel	. 3
Figure 5-1: Location of 7807LR-2/7807LR-2-H Jumpers and LEDs	. 8
Figure 6-1: Card Edge Menu Structure	14

Tables

Table 7-1: VistaLINK _® Monitored Parameters	29
Table 7-2: VistaLINK® Controlled Parameters	30
Table 7-3: VistaLINK® Traps	30

REVISION HISTORY

<u>REVISION</u>	DESCRIPTION	DATE
1.0	Initial Release	July 2011
1.1	Updated specifications, corrections	Sept 2011
1.2	Updated rear panel and block diagrams	June 2014

Information contained in this manual is believed to be accurate and reliable. However, Evertz assumes no responsibility for the use thereof nor for the rights of third parties, which may be affected in any way by the use thereof. Any representations in this document concerning performance of Evertz products are for informational use only and are not warranties of future performance, either expressed or implied. The only warranty offered by Evertz in relation to this product is the Evertz standard limited warranty, stated in the sales contract or order confirmation form.

Although every attempt has been made to accurately describe the features, installation and operation of this product in this manual, no warranty is granted nor liability assumed in relation to any errors or omissions unless specifically undertaken in the Evertz sales contract or order confirmation. Information contained in this manual is periodically updated and changes will be incorporated into subsequent editions. If you encounter an error, please notify Evertz Customer Service department. Evertz reserves the right, without notice or liability, to make changes in equipment design or specifications.

WARNING

Do not connect the 7807LR-2 without optical attenuation to a transmitter producing in excess of +3dBm optical power. Maximum optical input to the 7807LR-2 is +3dBm – more power than this may damage the receiver.

Do not connect the 7807LR-2-H without optical attenuation to a transmitter producing in excess of –7dBm optical power. Maximum optical input to the 7807LR-2-H is -7dBm – more power than this may damage the receiver.

This page left intentionally blank

1. OVERVIEW

The 7807LR-2 and 7807LR-2-H Fiber Optic Receivers are used for receiving RF signals transported optically over fiber optic cable by a companion transmitter. They accept two optical inputs and provide two pairs of electrical outputs. Individual monitoring and control is provided for each signal path. Gain may be adjusted manually in 0.5dB increments or managed automatically via AGC or IGC modes. SmartMON[™] capability decodes and displays incoming information from the paired SmartMON[™] enabled companion transmitter.

Two versions of the card are available, including the 7807LR-2 which has standard-sensitivity receivers, and the 7807LR-2-H which utilizes high-sensitivity receivers for medium/long-haul applications. With two optical receivers per single-slot card, the 7807LR-2 and 7807LR-2-H provide an economical and high density solution.

Features:

- Extended frequency response for extended L-Band off-air DTV and other signals
- Protocol independent design transports all modulation formats
- Supports manual, automatic (AGC), and intelligent (IGC) gain control modes
- IGC mode provides simple automatic compensation for fiber loss while output level tracks LNB level input at SmartMON[™] capable fiber transmitter
- 0.5dB gain adjustment granularity for setting manual gain or AGC target power levels
- Dual, full power outputs provided from each input to facilitate signal distribution or monitoring
- Dual fiber receivers on a single-slot card provides the industry's highest density solution
- The 7807LR-2-W is a dual channel card that features and on-board fiber WDM, requiring only a single fiber for the link (companion transmitter is the 7807LT13/15-2-W)
- Fully hot-swappable from front of frame
- SmartMON[™] capability for display of monitored parameters from companion SmartMON[™] capable fiber transmitters
- VistaLINK® capability is available for monitoring and control when modules are used in a 3RU 7800FR frame and a 7700FC VistaLINK_® frame controller is installed in slot 1 of the frame
- Form-C dry contact GPO alarm contacts for monitoring
- Fiber link provides electrical isolation between antenna and facility, mitigating ground loop and lightning issues
- Compatible with all 2408LT, 7706LT, 7708LT and 7807LT-2
- Wide range optical inputs (1270nm to 1610nm)
- Supports single-mode and multi-mode fiber optic cable
- Available with SC/UPC, ST/UPC, FC/UPC, SC/APC and FC/APC connector options
- The 7807LR-2/7807LR-2-H occupies one card slot and can be housed in a
- 1RU frame that will hold up to 3 modules, a 7800FR 3RU frame that will hold
- up to 15 modules, or a standalone enclosure which holds 1 module

7700/7800 MultiFrame Manual 7807LR-2, 7807LR-2-H Dual L-Band/Wideband RF Fiber Receiver

Figure 1-1: 7807LR-2/7807LR-2-H Block Diagram

2. INSTALLATION

The 7807LR-2/7807LR-2-H comes with a companion rear plate appropriate for a 1RU, 3RU or standalone enclosure as specified at the time of order. SC/UPC, SC/APC, ST/UPC, FC/UPC or FC/APC optical connectors are available and the type specified at the time of order will be installed. For information on mounting the rear plate and inserting the module into the frame, see the 7700/7800FR manual for detailed instructions.

Figure 2-1: 7807LR-2/7807LR-2-W Rear Panel

2.1. 7807LR-2/7807LR-2-H CONNECTIONS

- **FIBER INPUTS:** SC/UPC, SC/APC, ST/UPC, FC/UPC or FC/APC female connectors. This connector should be connected with suitable fiber optic cables to the optical outputs of an appropriate transmitter at the origin. The standard connector type is UPC. This connector type is compatible with standard PC connectors, but for optimal return loss performance, Evertz recommends the use of UPC fiber terminations throughout the system. The optional APC connectors provide further enhanced return loss performance, and when specified, should also be used throughout the system.
- **RF OUT:** Two electrical output connectors for each received RF signals. The dual connectors provide an extra connector for monitoring or further distribution.
- **GPO's:** The 3 pin terminal strip is used for the General Purpose Outputs (GPO). Pin1 and Pin2 refer to GPO1 and GPO2 respectively, whose behavior (NC/NO) can be selected by a jumper. (Refer to section 5.1 for Jumper Positions). Signal on GPO Common (C) is to be provided by the user. A minor alarm between Common and GPO1 is triggered in a state of RF exceeding threshold and major alarm between Common and GPO2 is triggered in a state of no optical power. Each GPO output is a set of normally open and normally closed relay contacts as shown in Figure 2-2.

Figure 2-2: GPO Configuration

Please note: Unused connectors should be terminated with appropriate loading (50 or 75 Ohm).

2.2. CARE AND HANDLING OF OPTICAL FIBER

2.2.1. Handling and Connecting Fibers

Never touch the end face of an optical fiber. Always keep dust caps on optical fiber connectors when not connected and always remember to properly clean the optical end facet of a connector before making a connection.

The transmission characteristics of the fiber are dependent on the shape of the optical core and therefore care must be taken to prevent fiber damage due to heavy objects or abrupt fiber bending. Evertz recommends that you maintain a minimum bending radius of 5 cm to avoid fiber-bending loss that will decrease the maximum attainable distance of the fiber cable. Evertz fiber optic modules come with cable lockout devices to prevent the user from damaging the fiber by installing a module into a slot in the frame that does not have a suitable rear plate installed.

3. 7807LR-2/7807LR-2-H SPECIFICATIONS

3.1. RF OUTPUTS

2 + 2 (two per optical input)
BNC per IEC 61169-8 Annex A (F type optional)
75 Ω (50 Ω optional)
>15dB
100MHz–2800MHz
+28dBM
-10 to –40dBm (within AGC range)
-10 to -65dBm (depends on the RF input level, gain setting and optical loss) -10 to +30dB

For detailed link performance specifications, see the Specifications section of the accompanying transmitter.

3.2. OPTICAL INPUTS

Number of Inputs:	2
Connector:	Female SC/UPC, SC/APC, ST/UPC, FC/UPC, FC/APC
Operating Wavelength:	1270nm - 1610nm
Optical Sensitivity:	
7807LR-2:	-14 dBm with \geq 35dB CNR*
7807LR-2-H:	-20 dBm with ≥ 35dB CNR*
Maximum Input Power:	
7807LR-2:	+3dBm
7807LR-2-H:	-7dBm

• Tested 36MHz BW source, CNR > 35dB at the transmitter.

3.3. GENERAL PURPOSE OUTPUTS

Number of Outputs: Type: Connector:	2 Dry relay contacts - NO and NC contact provided 3 pin removable terminal strip			
3.4. ELECTRICAL				
Voltage:	+12VDC			
Power:	6 Watts			
GPO Common:	+12VDC, 250mA (Max switching Voltage and Current)			
EMI/RFI:	Complies with FCC regulations for class A devices, Complies with EU EMC directive 89/336/EEC.			

3.5. PHYSICAL

7800, 7701 and S7701 frame mounting: Number of slots: 1

4. STATUS INDICATORS AND DISPLAYS

4.1. 7807LR-2/7807LR-2-H STATUS INDICATORS

The 7807LR-2/7807LR-2-H has ten LED status indicators on the front card edge to show operational status of the card at a glance. See Figure 5-1 for LED locations.

Two large LEDs on the front of the board indicate the general health of the module:

- LOCAL FAULT: This red LED indicates poor module health and will be on during the absence of a valid optical input signal or if a local internal power fault exists (i.e.: a blown fuse). Whether or not this LOCAL FAULT indication is reported to the frame may be selected by the FRAME STATUS jumper (see section 5.1).
- **MODULE OK:** This green LED indicates good module health. It will be on when a valid optical input signal is present, and the board power is good.

There are 8 small LEDs that indicate the status of the output RF signal, and optical input signal.

OPTICAL INPUT STATUS

CH1/CH2:

These LEDs will be yellow, respectively, when input optical powers on CH1 and CH2 are lower than or equal to the optical power low threshold settings. These will be green when the input optical powers are within threshold settings. These will be red when the input optical powers are higher than or equal to the optical power high threshold settings.

- **RF STATUS CH1/CH2:** These LEDs will be red, respectively, when the output RF signals on CH1 and CH2 are higher than or equal to threshold settings. These will be green when the output RF signals are within RF threshold settings. These will be yellow when the output RF signals are lower than or equal to the RF low threshold settings.
- **GAIN MODES CH1/CH2:** These LEDs are ON when AGC or IGC mode is enabled and OFF when Manual mode is enabled for CH1 and CH2. These will be green when power levels are within the AGC or IGC hold range and constant RF output levels are being maintained. These will be red if power levels are above the power levels required for the AGC/IGC circuit to be able to maintain a constant level. These will be yellow if power levels are below the power levels required for the AGC/IGC circuit to be able to maintain a constant level.

SQUELCH MODE CH1/CH2:

These LEDs are ON when squelch is enabled on respective Channel. These will be green when squelch modes are enabled but not active. These will be red when squelch modes are enabled and the output signals are squelched.

5. JUMPER POSITIONS

5.1. 7807LR-2/7807LR-2-H JUMPERS AND LEDS

Figure 5-1: Location of 7807LR-2/7807LR-2-H Jumpers and LEDs

5.2. SELECTING WHETHER LOCAL FAULTS WILL BE MONITORED BY THE GLOBAL FRAME STATUS

The FRAME STATUS jumper J3 determines whether local faults (as shown by the Local Fault indicator) will be connected to the 7700/7800FR frame's global status bus.

FRAME STATUS: To monitor faults on this module with the frame status indicators (on the Power Supply FRAME STATUS LEDs and on the Frame's Fault Tally output) install this jumper in the ON position (default).

When this jumper is installed in the Off position local faults on this module will not be monitored.

5.3. CONFIGURING THE MODULE FOR FIRMWARE UPGRADES

UPGRADE: The UPGRADE jumper J5 is used when firmware upgrades are being done to the module. For normal operation it should be installed in the *RUN* position. See the *Upgrading Firmware* section of this manual for more information.

To upgrade the firmware:

- 1. Pull the module out of the frame.
- 2. Move the UPGRADE jumper into the UPGRADE position.
- 3. Install the Upgrade cable provided (located in the vinyl pouch in the front of this manual) onto the SERIAL header at the card edge.
- 4. Re-install the module into the frame.
- 5. Run the upgrade as described in the *Upgrading Firmware* section of this manual.
- 6. When the upgrade is completed, remove the module from the frame, move the UPGRADE jumper into the *RUN* position, remove the upgrade cable and re-install the module.

The module is now ready for normal operation.

Note that if installed in a frame with a 7700/7800FC frame controller, the 7807LR-2/7807LR-2-H may also be conveniently upgraded through Evertz VistaLINK PRO, without service interruption. Consult VistaLINK_® PRO documentation for details on this feature.

5.4. FACTORY AND BDM JUMPERS

When shipped from the Evertz facility, the FACTORY and BDM jumpers will not be installed. These jumpers **should not** be installed for any reason. If jumpers are on these positions they should be removed.

5.5. GPO JUMPERS

The Jumpers GPO1 and GPO2 allow user to select the behavior of Outputs of GPO's.

In NC (Normally Closed) jumper position of GPO1, an OPEN circuit is present between C (common) pin and pin 1 of GPO connector and in NO (Normally Open) position of GPO1 a CLOSED circuit is present between C (common) pin and pin 1 of GPO connector.

In NC (Normally Closed) jumper position of GPO2, an OPEN circuit is present between C (common) pin and pin 2 of GPO connector and in NO (Normally Open) position of GPO2 a CLOSED circuit is present between C (common) pin and pin 2 of GPO connector.

6. DOT-MATRIX DISPLAY

Signal and status monitoring and control of the card's parameters are provided via the four-digit alphanumeric display located on the card edge. The card-edge toggle-switch (see Figure 5-1) is used to navigate through the display menus and the push button is used to select options. Figure 6-1 provides a quick reference to the display menu structure.

CTRL menu items have user-adjustable configuration values associated with them. STAT menu items display operating conditions or configuration values, but do not allow adjustment.

If a specific menu selection has a configuration value associated with it, then this may be changed using the toggle switch. Pressing the pushbutton will apply the displayed value and return you to the previous menu level.

The most recent user selection will be maintained in non-volatile memory in the event of power loss to the module.

7700/7800 MultiFrame Manual

Level 1	Level 2	Level 3	Level 4	Level 5	Level 6
		OPTH	LWR	CH1	-4 to -40 dBm Default -30 dBm
				CH2	-4 to -40 dBm Default -30 dBm
			LIDDD	CH1	-3 to +5 dBm Default +5 dBm
			UPPK	CH2	-3 to +5 dBm Default +5 dBm
				CH1	-30 to -55 dBm Default -55 dBm
			LWK	CH2	-30 to -55 dBm Default -55 dBm
		реты	LIDDD	CH1	0 to -29 dBm Default -5 dBm
		KF I H	UPPK	CH2	0 to -29 dBm Default -5 dBm
	RX		SQL	CH1	-40 to -65 dBm Default -60
				CH2	-40 to -65 dBm Default -60
CTRL		MODE GAIN (not visible in AGC Mode)	CH1	IGC	
				AGC (default)	
			CH2	IGC	
				MAN	
				AGC (default)	
			CH1	See notes Default 0 dB	MAN -10 to -31.5dB IGC -10 to -31.5dB
			CH2	See notes Default 0 dB	MAN -10 to -31.5dB IGC -10 to -31.5dB
		OUTL (visible in AGC Mode only)	CH1	-10 to -40 dBm Default - 20 dBm	
			CH2	-10 to -40 dBm Default - 20 dBm	
		SQL	CH1	EN DIS (default)	
			CH2	EN DIS (default)	

				LWR	-30 to -65 dBm Default -65 dBm
			RFTH -	UPPR	0 to -29 dBm Default -5 dBm
			TPTH (visible if TX is	LWR	-40 to 125°C Default 0°C
СТРІ			2408LT,2407LT or 2407LTA)	UPPR	-40 to 125°C Default 0°C
(continued)		СПІ	PWTH (visible if TX is	LWR	11 to 15 Volt Default 11V
			2408LT,2407LT or 2407LTA)	UPPR	16 to 23Volt Default 20V
			LCTH (not visible is	LWR	0 to 500mA Default 0mA
	TV		TX is 2407LT or 2407 LTA)	UPPR	0 to 500mA Default 0mA
	IX		RFTH -	LWR	-30 to -65 dBm Default -65 dBm
		CH2		UPPR	0 to -29 dBm Default -5 dBm
			TPTH (visible if TX is 2408LT,2407LT or 2407LTA)	LWR	-40 to 125°C Default 0°C
				UPPR	-40 to 125°C Default 0°C
			PWTH (visible if TX is 2408LT,2407LT or 2407LTA)	LWR	11 to 15 Volt Default 11V
				UPPR	16 to 23Volt Default 20V
			LCTH (not visible is TX is 2407LT or 2407 LTA)	LWR	0 to 500mA Default 0mA
				UPPR	0 to 500mA Default 0mA
	DISP	HORZ			
		VER (default)			
	FRST	YES	Factory reset (leaves calibration offset alone)		
		NO			

			СН1	+7 to _40 dBm	
			GIII		
		OPWR	CH2	+7 to -40 dBm	
			OTIZ		
			CH1	0 to -55 dBm	
		RPWR	CH2	0 to -55 dBm	
				DIS	
			CH1	ACT	
	RX	501		NACT	
		SQL		DIS	
			CH2	ACT	
			TONE	NACT	
	ТХ		IONE	present/loss	
			INPL	0 to -60dBm	
			MODE	AGC	
OT A T			GAIN	0-31 5	
STAT			0/AIN	OFF	
				LOW	
			AGC	OK	
				HIGH	
			RFDR	HIGH	
			(VISIDIE IT 1 X IS 2408 T 2407 T	OK	
			or 2407LTA)	LOW	
			OPWR		
				OK	
		CH1	LAGIN	DEGR	
			PSU (visible if TX is	VOLT	
			or 2407LTA)	STAT	OK FAIL
			TEMP		17.02
			(visible if TX is		
			2408LT,2407LT		
			or 2407LTA)		
				+13V,	
			LNB	+13VT,	
				+1/V, +17\/T	
				BYPT	
				+18V	

			I NBV	if TX 2408LT,2407LTor 2407LTA	
			22KT	ZHOTETA	
			LNBC		
			VFR		
			SER	If TX is 24081 T	
				nrosont/loss	
				0 to 60dBm	
			MODE	MAN	
			GAIN	0_31.5	
			GAIN	0-51.5	
			AGC		
				нісн	
			REDR	нісн	
			(visible if TX is	OK	
			2408LT,2407LT		
			or 2407LTA)	LOW	
	ТХ		OPWR		
	(continued)		LASR	OK	
				DEGR	
			PSU (visible if TX is 2408LT,2407LT or 2407LTA)	VOLT	
		CH2		STAT	OK FAIL
			TEMP (visible if TX is 2408LT,2407LT or 2407LTA)		
STAT (continued)			LNBM	OFF BYP, +13V, +13VT, +17V, +17VT, BYPT +18V	
			LNBV		
			22KT		
			LNBC		
			VER		
			TYPE		
			SER	If TX is 2408LT	
	VER			Firmware Version	

Figure 6-1: Card Edge Menu Structure

6.1. 7807LR-2/7807LR-2-H CONTROLLED PARAMETERS

To change the 7807LR-2/7807LR-2-H parameters, select the CTRL menu item in menu level 1. Use the toggle switch to select the RX menu item and press the pushbutton. The toggle switch may then be used to select the parameter to change as described below:

6.1.1. Adjusting the Optical Power Alarm Thresholds

The 7807LR-2/7807LR-2-H measures and can display the input optical power over a range of +7dBm to – 40dBm in increments of 1dBm. Alarm points may be set for high input optical power, and low input optical power. These alarms will appear locally on the card edge LEDs (see Section 3) and remotely via SNMP traps. To adjust the optical power alarm thresholds, select the CTRL menu item in the first menu level, then use the toggle switch to display the RX option and press the pushbutton to select it. Use the toggle switch to then select from the UPPR and LWR thresholds. Choices are as follows:

CTRL RX	-1 to -40 dBm	7807LR-2: Lower optical power alarm threshold (default –14 dBm).
OPTH LWR	-4 to -40 dBm	7807LR-2-H: Lower optical power alarm threshold
-1 to -40 dBm -4 to -40 dBm		(default –20 dBm).
CTRL RX	+3 to -3 dBm	7807LR-2: Upper optical power alarm threshold (default +3 dBm).
UPPR CH1/CH2 +3 to -3 dBm -7 to -13 dBm	-7 to -13 dBm	7807LR-2-H: Upper optical power alarm threshold (default -7 dBm).

6.1.2. Adjusting the RF Output Power Alarm and Squelch Thresholds

The 7807LR-2/7807LR-2-H measures and can display the output RF power over a range of 0dBm to – 60dBm in increments of 1dBm. Alarms may be set for high and low output RF power that will appear locally on the card edge LEDs (see Section 3) and remotely via SNMP traps. To set the alarm threshold points, select the CTRL menu item in the first menu level, then use the toggle switch to display the RX option and press the pushbutton to select it. Use the toggle switch to display the RFTH option and press the pushbutton to select it. Use the toggle switch to then select from the UPPR and LWR thresholds. Choices are as follows:

Additionally, the RF Squelch threshold may be set from this menu via the sqL selection. The squelch level is based on the RF input power to the transmitter, and therefore this threshold feature will only function when a compatible transmitter that sends monitoring information down the fiber is connected, such as the 2407LT.

(CTR	?L		-40
	RX	<		
		RF	TH	
	_	S	SQL	
			CH1/CH2	
		-	-40 to -65 dBm	

0 to -65 dBm RF power entering at the transmitter at which point the output should be squelched (default -60 dBm).

6.1.3. Selecting the Output Gain Mode

The 7807LR-2/7807LR-2-H has several gain modes available:

Manual gain mode allows the user to select a fixed gain level for the RF signal.

AGC (automatic gain control) will maintain a constant output level even if the input RF level changes, as long as this input level does not go outside of the AGC hold range. The AGC target level is user adjustable (see Section 6.1.5).

IGC mode compensates for optical loss and outputs an RF signal level proportional to what is coming into the transmitter, within the signal level capabilities of the receiver. The IGC mode is based on the RF input power to the transmitter, and therefore this feature will only function when a transmitter featuring SmartMON[™] is used. With no gain applied, the output signal from the 7807LR-2/7807LR-2-H will be at the same level as the input to the transmitter. Additional gain may be applied to this signal level (see next section) as an offset. Note that this mode will not be available unless an appropriate SmartMON[™] capable transmitter that sends monitoring data down the fiber is connected.

To select the gain mode, select the CTRL menu item in the first menu level, then use the toggle switch to display the RX option and press the pushbutton to select it. Use the toggle switch to display the MODE option and press the pushbutton to select it.

(CTRL	AG
	RX	IG
	MODE	MA
	CH1/CH2	
	AGC	
	IGC	
	MAN	

CAGC mode (default).CIGC mode.NManual mode.

6.1.4. Adjusting the RF Output Gain

The 7807LR-2/7807LR-2-H can apply gain to adjust the level of the output signal in 0.5 dB increments. Gain may be applied when the card is set for manual or IGC modes (see previous section). To set the gain, select the CTRL menu item in the first menu level, then use the toggle switch to display the RX option and press the pushbutton to select it. Use the toggle switch to display the GAIN option and press the pushbutton to select it.

CTRL			
RX			
(GA.	IN	
	С	H1/CH2	
-		-10 to +31.5 dBm	

-10 to +31.5 dBm Output signal gain level (default 0 dBm).

Note that this menu item is not applicable and therefore not visible when in AGC mode.

6.1.5. Adjusting the AGC Target Level

The target output level to be maintained by the 7807LR-2/7807LR-2-H when in AGC mode is user adjustable. To set the AGC target level, select the CTRL menu item in the first menu level, then use the toggle switch to display the RX option and press the pushbutton to select it. Use the toggle switch to display the OUTL option and press the pushbutton to select it.

CTRL
RX
OUTL
CH1/CH2
-10 to -40 dBm

-10 to -40 dBm AGC output signal target level (default -20 dBm).

Note that this menu item is only applicable and visible when the card is set to operate in AGC mode.

6.1.6. Enabling/Disabling Squelch Mode

Squelch mode will turn off the RF output if it drops below a certain input power level as reported by the transmitter (see section 6.1.2) or if the input optical power drops below -40 dBm. To enable or disable squelch mode, select the CTRL menu item in the first menu level, then use the toggle switch to display the RX option and press the pushbutton to select it. Use the toggle switch to display the SQL option and press the pushbutton to select it.

6.1.7. Setting the Card Edge Display Orientation

The **DISP** display option allows the user to set a horizontal or vertical orientation for the card edge display messages. To set the display orientation, select the **CTRL** menu item in menu level 1, then use the toggle switch to display the **DISP** menu selection and use the pushbutton to select it. Use the toggle switch to change between **HOR** and **VERT**. Press the push button to make your selection.

СТ	RL	HORZ
D	NSP	
	HORZ	VERT
	VERT	

ſ

Horizontal display used when the module is housed in the 1 rack unit 7701FR frame or the stand-alone enclosure. Vertical display used when the module is housed in the 3-rack unit 7700/7800FR frame.

6.1.8. Resetting Factory Defaults

The **FRST** menu option will return the 7807LR-2/7807LR-2-H to factory defaults. To return all settings to factory defaults, select the **CTRL** menu item in menu level 1, then use the toggle switch to display the **FRST** menu selection and use the pushbutton to select it.

C	TRL	YES
	FRST	NO
	YES	
	NO	

Perform factory reset.

Do not perform factory reset.

6.2. TRANSMITTER CONTROLLABLE PARAMETERS

The 7807LR-2/7807LR-2-H can decode and display monitoring data sent across the fiber by compatible Evertz transmitters featuring SmartMON[™]. Several of these monitored parameters are suitable for alarming via SNMP/VistaLINK. The thresholds for these alarms may be adjusted via the card edge or through SNMP. Note that these menu items will not be available unless an appropriate SmartMON[™] equipped transmitter that sends monitoring data down the fiber is connected.

Note: Not all compatible transmitter models have the same controllable parameters only those applicable to the specific transmitter model will be available. See the following table for parameters related to the connected transmitter.

Parameter	2407LTA	2408LT	7708LT	7807LT-2
RF Power Alarm Thresholds	Х	Х	Х	Х
Temperature Alarm Thresholds	Х	Х		
Input DC Alarm Thresholds	Х	Х		
LNB Current Alarm Thresholds		Х	Х	Х

6.2.1. Adjusting the RF Input Power Alarm Thresholds

SNMP alarms may be set for high and low input RF power to the transmitter. To set the alarm threshold points, select the CTRL menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the RFTH option and press the pushbutton to select it. Use the toggle switch to then select from the **UPPR** and **LWR** thresholds. Choices are as follows:

CTRL	-30 to -65 dBm	Lower RF power alarm threshold (default -65
TX		dBm).
CH1/CH2		
RFTH		
LWR		
-30 to -65 dBm		
CTRL	0 to -29 dBm	Upper optical power alarm threshold (default -5
TX		dBm).
CH1/CH2		
RFTH		
UPPR		
0 to -29 dBm		

6.2.2. Adjusting the Internal Transmitter Temperature Alarm Thresholds

SNMP alarms may be set for high and low internal temperature readings at the transmitter. To set the alarm threshold points, select the CTRL menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the TPTH option and press the pushbutton to select it. Use the toggle switch to then select from the **UPPR** and **LWR** thresholds. Choices are as follows:

CTRL	-40 to	+ 125 deg C.	Lower temperature alarm threshold (default
TX			0 deg C.)
CH1/CH2			
TPTH			
LWR			
-40 to +125 deg C.			

C	CTRL	
	TX	
	CH1/CH2	
	TPTH	
	UPPR	
	-40 to +125 deg C.	

-40 to +125 deg C.

Upper temperature alarm threshold (default 85 deg C.)

6.2.3. Adjusting the Input Voltage Alarm Thresholds

SNMP alarms may be set for high and low DC input Voltage at the transmitter. To set the alarm threshold points, select the CTRL menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the PWTH option and press the pushbutton to select it. Use the toggle switch to then select from the **UPPR** and **LWR** thresholds.

CTRL	11	to	15	VDC	Lower	input	voltage	alarm	threshold	(default	11
TX					VDC.)						
CH1/CH2											
PWTH											
LWR											
11 to 15 VDC											
CTRL	16	to	23	VDC	Upper	input	voltage	alarm	threshold	(default	20
TX					VDC.)						
CH1/CH2											
PWTH											
	1										
UPPR											

6.2.4. Adjusting the LNB Current Alarm Thresholds

SNMP alarms may be set for high and low LNB current at the transmitter, providing a convenient means of remotely monitoring LNB condition. To set the alarm threshold points, select the CTRL menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the LCTH option and press the pushbutton to select it. Use the toggle switch to then select from the UPPR and LWR thresholds.

CTRL
TX
CH1/CH2
LCTH
LWR
0 to 500 mA

0 to 500 mA Lower LNB current alarm threshold (default 0 mA.)

CTRL	0	to
TX		
CH1/CH2		
LCTH		
UPPR		
0 to 500 mA		

) to **500** mA

Upper input voltage alarm threshold (default 500 mA.)

6.3. 7807LR-2/7807LR-2-H MONITORED CONDITIONS AND PARAMETERS

To view the 7807LR-2/7807LR-2-H monitored parameters, select the STAT menu item in menu level 1. Use the toggle switch to select the RX menu item and press the pushbutton. The toggle switch may then be used to select the parameter to view as described below:

6.3.1. Displaying the Input Optical Power

The 7807LR-2/7807LR-2-H measures and can display the input optical power over a range of +7dBm to – 40dBm in increments of 1dBm. To display the input optical power, select the STAT menu item in the first menu level, then use the toggle switch to display the RX option and press the pushbutton to select it. Use the toggle switch to display the OPWR option and press the pushbutton to select it.

S	ΤΑΤ	+7
	RX	LOW
	OPWR	
	CH1/CH2	
	+7 to -40 dBm	
	IOW	

+7 to -40

Optical input power within this range. Input optical power low (< -40 dBm).

6.3.2. Displaying the Output RF Power

The 7807LR-2/7807LR-2-H measures and can display the output RF power over a range of 0dBm to – 60dBm in increments of 1dBm. To display the output RF power, select the STAT menu item in the first menu level, then use the toggle switch to display the RX option and press the pushbutton to select it. Use the toggle switch to display the OPWR option and press the pushbutton to select it.

S	ST/	A <i>T</i>
	R	X
-		RPWR
		CH1/CH2
		0 to –60 dBm

0 to -60 dBm Output RF power within this range.

6.3.3. Displaying the Squelch Status

To display the squelch mode setting and status, select the STAT menu item in the first menu level, then use the toggle switch to display the RX option and press the pushbutton to select it. Use the toggle switch to display the SQL option and press the pushbutton to select it.

STA	T	DIS
R	X	ACT
	SQL	
_	CH1/CH2	NACT
	DIS	
	ACT	
	NACT	

Squelch mode disabled.

Squelch mode enabled and active (output signal squelched).

Squelch mode enables and not active.

6.4. TRANSMITTER MONITORED PARAMETERS

The 7807LR-2/7807LR-2-H can decode and display monitoring data sent across the fiber by compatible Evertz transmitters featuring SmartMONTM. To view the monitored parameters of the connected transmitter, select the STAT menu item in menu level 1. Use the toggle switch to select the TX menu item and press the pushbutton. The toggle switch may then be used to select the parameter to view as described below. Note that these parameters will not be available for viewing unless the connected transmitter has the feature to send monitoring data down the fiber.

Note: Not all compatible transmitter models send the same parameters – only those applicable to the specific transmitter model will be displayed. See the following table for parameters related to the connected transmitter.

Parameter	2407LTA	2408LT	7708LT	7807LT-2
Input RF Level	Х	Х	Х	Х
Gain Mode	Х	Х	Х	Х
Applied Gain	Х	Х	Х	Х
AGC Status	Х	Х	Х	Х
RF Drive	Х	Х	Х	Х
Optical Output Power	Х	Х	Х	Х
Laser Status	Х	Х	Х	Х
Power Supply Status	Х	Х		
Internal Temperature	Х	Х		
LNB Power Mode	Х	Х		
LNB Voltage	Х	Х	Х	Х
LNB Current		Х	Х	Х
Firmware Version	Х	Х	Х	Х
Transmitter Model	Х	Х	Х	Х

6.4.1. Displaying the Presence of the Data Signal

The 7807LR-2/7807LR-2-H detects and can display the presence or loss of the SmartMON[™] data signal from a companion transmitter. To display the display the status of this data signal, select the STAT menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the TONE option and press the pushbutton to select it.

STAT	PRES
TX	LOSS
CH1/CH2	
TONE	
PRES	
LOSS	

Data signal from connected transmitter present. No data signal detected.

Note: The following menu items will not be displayed unless the data signal from a SmartMON[™] equipped transmitter is detected.

6.4.2. Displaying the Input RF Power to the Connected Transmitter

To display the input RF power to the transmitter, select the STAT menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the INPL option and press the pushbutton to select it.

STAT	
TX	
CH1/CH2	
INPL	
+10 to -65	

+10 to -65 Input RF power in dBm.

6.4.3. Displaying the Gain Mode of the Connected Transmitter

To display the gain mode of the connected transmitter, select the STAT menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the MODE option and press the pushbutton to select it.

S	ΤA	١7	-	AGC
	T,	X		MAN
	(Cł	11/CH2	
		1	MODE	
			AGC	
			MAN	

Gain mode is AGC (automatic gain control). Gain mode is manual.

6.4.4. Displaying the Gain Level of the Connected Transmitter

To display the gain level of the connected transmitter, select the STAT menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the GAIN option and press the pushbutton to select it.

STAT	0 to
TX	
CH1/CH2	
GAIN	
0 to 31 dB	

31 dB Gain level set either manually, or automatically applied by the transmitter if in AGC mode.

6.4.5. Displaying the AGC Status of the Connected Transmitter

To display the AGC Status of the connected transmitter, select the STAT menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the AGC option and press the pushbutton to select it.

STAT	OFF	AGC mode is off (transmitter is set for manual gain
TX		mode).
CH1/CH2	OK	AGC mode is selected, and the input RF power to the
AGC		transmitter is within the AGC hold range.
OFF	HIGH	AGC mode is selected, and the input RF power to the
OK		transmitter is above the AGC hold range.
HIGH	LOW	AGC mode is selected, and the input RF power to the
LOW		transmitter is below the AGC hold range.
		-

6.4.6. Displaying the RF Drive Status of the Connected Transmitter

To display the RF Drive status of the connected transmitter, select the STAT menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the RFDR option and press the pushbutton to select it.

Laser is being over driven – this may appear as IMD products on the received signal. Laser is being driven at normal levels. Laser is being under-driven – this may appear as low S/N ratio on the received signal.

6.4.7. Displaying the Output Optical Power of the Connected Transmitter

To display the output optical power of the connected transmitter, select the STAT menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the OPWR option and press the pushbutton to select it.

S	TAT	+10 to -10 dBm	Laser output power.
	TX		
-	CH1/CH2		
	OPWR		
	+10 to -10 dBm		

6.4.8. Displaying the Laser Status of the Connected Transmitter

To display the laser status of the connected transmitter, select the STAT menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the LASR option and press the pushbutton to select it.

STAT				OK
	T.	Χ		DGRD
_	(Cŀ	H1/CH2	
		L	ASR	
			DGRD	
			ОК	

Laser is operating normally. Laser operation is degraded, or laser has reached approximately 80% of its useful lifespan.

6.4.9. Displaying Status of the Power Supply Connected to the Transmitter

To display the status of the power supply connected to the transmitter, select the STAT menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the PSU option and press the pushbutton to select it. Then select from VOLT to show the DC input voltage to the transmitter as provided by the power supply, or select STAT to check the status of the internal power supplies (applicable only on Evertz power supplies capable of sending monitoring information to the transmitter).

STAT	18 to 23 VDC	DC Voltage level entering the transmitter
TX		
CH1/CH2		
PSU		
VOLT		
18 to 23 VDC		

STAT	OK
TX	FAIL
CH1/CH2	
PSU	
STAT	
OK	
FAIL	

Connected power supply internal modules are both OK. One internal module in the connected power supply has failed and redundancy has been lost.

6.4.10. Displaying the Internal Temperature of the Connected Transmitter

To display the internal temperature of the connected transmitter, select the STAT menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the TEMP option and press the pushbutton to select it.

STAT			
	TX		
	CH1/CH2		
-	TEMP		
	-40 to +125 deg C.		

-40 to +125 deg C.

Internal temperature of the connected transmitter.

6.4.11. Displaying the LNB Mode of the Connected Transmitter

To display the LNB Mode of the connected transmitter, select the STAT menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the LNBM option and press the pushbutton to select it.

STAT	OFF	LNB supply is turned off.
TX	13V	LNB supply is set for 13VDC.
CH1/CH2	13VT	LNB supply is set for 13VDC + 22kHz.
LNBM	17V	LNB supply is set for 17VDC.
OFF	17VT	LNB supply is set for 17VDC + 22kHz.
13V	BYP	LNB supply is set for DC Pass mode and LNB power is
13VT		supplied directly by the connected power supply.
17V	BYPT	LNB supply is set for DC Pass +22kHz mode and LNB
17VT		power is supplied directly by the connected power supply.
BYP		
BYPT		

6.4.12. Displaying the LNB Voltage of the Connected Transmitter

To display the LNB Voltage of the connected transmitter, select the STAT menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the LNBV option and press the pushbutton to select it.

STAT		
TX		
Cl	H1/CH2	
LNBV		
	0 to 23 VDC	

0 to 23 VDC Voltage supplied to the LNB as specified by the LNB mode setting, or as provided by the connected power supply if in DC PASS mode.

6.4.13. Displaying the LNB Current

To display the LNB Current, select the STAT menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the LNBC option and press the pushbutton to select it.

STAT		
TX		
CH1/CH2		
LNBC		
0 to 500A		

Indicates the LNB current. Visible for -LNB versions only.

0 to 500 A RF current range.

6.4.14. Displaying the Firmware Version of the Connected Transmitter

To display the firmware version of the connected transmitter, select the STAT menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the VER option and press the pushbutton to select it. The firmware version will scroll across the display.

For example: VER 1.0 BUILD 006

6.4.15. Displaying the Model of the Connected Transmitter

To display the model of the connected transmitter, select the STAT menu item in the first menu level, then use the toggle switch to display the TX option and press the pushbutton to select it. Use the toggle switch to display the TYPE option and press the pushbutton to select it. The model will scroll across the display.

For example: 2408LT

7. VISTALINK_® REMOTE MONITORING/CONTROL

7.1. WHAT IS VISTALINK_®?

VistaLINK_® is Evertz's remote monitoring and configuration platform which operates over an Ethernet network using Simple Network Management Protocol (SNMP). SNMP is a standard computer network protocol that enables different devices sharing the same network to communicate with each other. VistaLINK_® provides centralized alarm management, which monitors, reports, and logs all incoming alarm events and dispatches alerts to all the VLPro Clients connected to the server. Card configuration through VistaLINK_® PRO can be performed on an individual or multi-card basis using simple copy and paste routines, which reduces the time to configure each module separately. Finally, VistaLINK_® enables the user to configure devices in the network from a central station and receive feedback that the configuration has been carried out.

There are 3 components of SNMP:

- 1. An SNMP manager, also known as a Network Management System (NMS), is a computer running special software that communicates with the devices in the network. Evertz VistaLINK_® Pro Manager graphical user interface (GUI), third party or custom manager software may be used to monitor and control Evertz VistaLINK_® enabled fiber optic products.
- Managed devices, each with a unique address (OID), communicate with the NMS through an SNMP Agent. Evertz VistaLINK_® enabled 7700/7800 series modules reside in the 3RU 7700/7800FR-C MultiFrame and communicate with the manager via the 7700/7800FC VistaLINK_® frame controller module, which serves as the Agent.
- 3. A virtual database, known as the Management Information Base (MIB), lists all the variables being monitored, which both the Manager and Agent understand. Please contact Evertz for further information about obtaining a copy of the MIB for interfacing to a third party Manager/NMS.

For more information on connecting and configuring the VistaLINK® network, see the 7700/7800FC Frame Controller chapter.

7.1.1. VISTALINK® Monitored Parameters

Parameter	Description
Optical Power	Receiver Input Optical Power
RF Output Power	Receiver RF output power
Gain	Receiver gain setting
Squelch	Receiver squelch status
Firmware Version	Receiver firmware version
RF Input Power	Transmitter RF input power
Gain Mode	Transmitter gain mode
Gain	Transmitter applied gain
AGC State	Transmitter AGC state
RF Drive	Transmitter RF drive status
Optical Output Power	Transmitter optical output power
LASER Status	Transmitter laser status
DC Input power	Transmitter DC input power
PSU Redundant Supply Status	Transmitter connected DC power supply status
LNB Control Setting	Transmitter LNB mode setting
LNB Voltage	Transmitter LNB voltage
LNB Current	Transmitter current supplied to connected LNB
Temperature	Transmitter internal temperature
Firmware Version	Transmitter firmware version
Transmitter Model	Transmitter model

Table 7-1: VistaLINK® Monitored Parameters

7.1.2. VISTALINK® Controlled Parameters

Parameter	Description
Lower Optical Power Threshold	Receiver low optical power alarm threshold
Upper Optical Power Threshold	Receiver high optical power alarm threshold
Lower RF Output Power Threshold	Receiver low RF power alarm threshold
Upper RF Output Power Threshold	Receiver high RF power alarm threshold
Gain	Receiver Output signal gain
AGC RF Output Level	Receiver AGC target level
Gain Mode	Receiver Gain mode (manual, AGC, IGC)
Squelch	Receiver Squelch mode enable/disable
Squelch Threshold	Receiver Squelch threshold setting
Lower RF Input Power Threshold	Transmitter low RF power alarm threshold
Upper RF Input Power Threshold	Transmitter high RF power alarm threshold
Lower Temperature Threshold	Transmitter low temperature power alarm threshold
Upper Temperature Threshold	Transmitter high temperature power alarm threshold
Lower DC Supply Input Voltage Threshold	Transmitter low DC input voltage alarm threshold
Upper DC Supply Input Voltage Threshold	Transmitter high DC input voltage alarm threshold

Lower LNB Current Threshold	Transmitter low LNB current alarm threshold
Upper LNB Current Threshold	Transmitter high LNB current alarm threshold

Table 7-2: VistaLINK_® Controlled Parameters

7.1.3. VISTALINK_® Traps

Traps	Description
RF Output Power High	Receiver RF output high
RF Output Power Low	Receiver RF output low
Optical Input Power High	Receiver optical input high
Optical Input Power Low	Receiver optical input low
AGC out of Range	Receiver out of AGC range
Squelch Active	Receiver output signal squelched
RF Input Power High	Transmitter RF input high
RF Input Power Low	Transmitter RF input low
Temperature High	Transmitter temperature high
Temperature Low	Transmitter termperature low
DC Supply High	Transmitter DC input voltage high
DC Supply Low	Transmitter DC input voltage low
RF Drive High	Transmitter RF Drive high
RF Drive Low	Transmitter RF Drive low
LNB Current High	Transmitter LNB current high
LNB Current Low	Transmitter LNB current low
LNB Short	LNB current overload or short circuit

Table 7-3: VistaLINK_® Traps