

TABLE OF CONTENTS

1.	OVERVIEW1
	1.1. FUNCTIONAL DESCRIPTION2
2.	INSTALLATION
	2.1. VIDEO IN AND OUT
3.	SPECIFICATIONS
	3.1. SERIAL VIDEO INPUT
	3.2. ANALOG BROADCAST VIDEO OUTPUT6
	3.3. REFERENCE VIDEO INPUT7
	3.4. ANALOG MONITORING VIDEO OUTPUT7
	3.5. ANALOG AUDIO OUTPUTS (-A4 ONLY)7
	3.6. UNBALANCED AES AUDIO INPUTS (-A4 ONLY)8
	3.7. BALANCED AES AUDIO INPUTS (-A4-B ONLY)8
	3.8. ELECTRICAL
	3.9. PHYSICAL
4.	STATUS LEDS9
	4.1. MODULE STATUS LEDS9
	4.2. AUDIO STATUS LEDS10
5.	AUDIO LEVELS, HEADROOM, CLIPPING AND THE BAR GRAPHS11
6.	AUDIO ALARM CALIBRATION PROCEDURE12
	6.1. CALIBRATE AUDIO SILENCE DETECTION12
	6.2. CALIBRATE AUDIO PHASE REVERSAL DETECTION12
	6.3. CALIBRATE AUDIO MONO DETECTION12
	6.4. DEFINE THE FAULT CONDITION(S)13

7.	ON S	SCREEN MENUS	14
	7.1.	NAGIVATING THE ON SCREEN MENU SYSTEM	14
	7.2.	CHANGING TEXT FIELDS	14
	7.3.	ON SCREEN DISPLAY – MAIN MENU	15
	7.4.	CONFIGURING THE AUDIO CONTROLS (-A4)	16
		 7.4.1. Selecting the Audio Source	16 17 17 18 18 19
	7.5.	CONFIGURING THE VIDEO AND SOURCE ID CONTROLS	19
		 7.5.1. Setting the Video Standard	$\begin{array}{c} 21\\ 22\\ 23\\ 23\\ 24\\ 24\\ 24\\ 24\\ 25\\ 25\\ 26\\ 26\\ 26\\ 26\\ 27\\ \end{array}$
	7.6.	CONFIGURING THE VIDEO PROCESSING CONTROLS	27
		 7.6.1. Adding the NTSC Setup Pedestal	28 28 29 29 29 29 29 29 29 30

	7.6.10. 7.6.11.	H Blanking VBI Blanki	ng	30 30
	7.6.12.	Y Filter Se	lection	30
	7.6.13.	Wideband	Y Frequency Response	30
	7.6.14.	Chroma Fi	iter Selection	31
7.7.	CONFIG	URING THE	νві	32
	7.7.1.	Line Proce	ssing	32
7.8.	CONFIG	URING THE	BAR GRAPH CONTROLS	33
	7.8.1.	Selecting t	he Bar Graph Operating Mode	33
	7.8.2.	Setting the	Headroom	34
	7.8.3.	Setting the	Bar Graph Type	34
	7.8.4.	Setting the	PPM Mode and Ballistics	35
	7.8.5.	Setting the	VU Display Range	35
	7.8.6.	Setting the	Phase Bar Graph Type	36
	7.8.7.	Setting the	Bar Graph Error Region	36
	7.8.8.	Setting the	Bar Graph Warning Region	36
	7.8.9.	Setting the	Level Bar Graph Scale Position	36
	7.8.10.	Setting the	Phase Bar Graph Scale Position	37
	7.8.11.	Setting the	Window and Bar Graph Positions	37
	7.8.12.	Setting the	Colours of the Bar Graphs	37
		7.8.12.1.	Setting the Level Bar Graph Region Colour	37
		7.	8.12.1.1. Selecting a Bar Graph Region Custom Colour	37
	7.8.13.	Setting The	e Level Bar Graph Size	38
	7.8.14.	Setting the	Transparency (Opacity) of Bar Graph Background	38
	7.8.15.	Setting the	Transparency (Opacity) of the Bar Graph Bars	38
7.9.	CONFIG	URING THE	ON-SCREEN DISPLAY CONTROLS	38
	7.9.1.	Descriptior	s of the On-Screen Windows	39
		7.9.1.1.	Video/Audio Status	39
		7.9.1.2.	Audio Bar Graphs	40
		7.9.1.3.	VITC Time Code Window	40
		7.9.1.4.	Program Rating Window	41
		7.9.1.5.	CC Window	41
		7.9.1.6.	XDS Window	41
		7.9.1.7.	Source Identification Window	41
		7.9.1.8.	Fault Message Windows	41
	7.9.2.	Setting the	Position of On Screen Windows	41
		7.9.2.1.	Setting the Horizontal Position of On Screen Windows	42
		7.9.2.2.	Setting the Vertical Position of On Screen Windows	42
	7.9.3.	Selecting V	Vhat Bar Graphs And Windows To Display	42
	7.9.4.	Setting the	Text Window Attributes	42
		7.9.4.1.	Turning on the Text Window Backgrounds	43
		7.9.4.2.	Setting the Text Window Background Colours	43
		7.9.4.3.	Setting the Text Window Background Opacity	43
		7.9.4.4.	Setting the Text Window Text Opacity	43
		7.9.4.5.	Setting the Time Code Window Font Size	44
		7.9.4.6.	Setting the Program Rating Window Font Size	44
		7.9.4.7.	Setting the Source ID Window Font Size	44
		7.9.4.8.	Setting the Status Window Mode	44

7.9.5.	Setting the Fault Window Attributes	45
	7.9.5.1. Turning on the Fault Window Backgrounds	45
	7.9.5.2. Setting the Fault Window Background Colours	45
	7.9.5.3. Setting the Fault Window Background Opacity	45
	7.9.5.4. Setting the Fault Window Text Opacity	45
	7.9.5.5. Setting the Fault Window Font Size	46
	7.9.5.6. Setting the Blink Mode of the Fault Windows	46
7.10. GPO CO	NFIGURATION	46
7.10.1.	Frame Status Fault Trigger Condition	46
7.11. FAULT [DEFINITIONS	47
7.11.1.	Setting Up How a Fault is Triggered and How it is Presented	
	7.11.1.1. Fault Status	
	7.11.1.2. Setting the position of the Fault Windows	
	7.11.1.3. Setting the Message Associated with a Fault	
	7.11.1.4. Determining If the Fault Message Will Be Displayed	
	7.11.1.5. Setting the Duration of the Fault Condition	
	7.11.1.6. Determining What Items Will Generate the Fault Condition	50
7.11.2.	Setting the Fault Window Attributes	50
7.11.3.	Setting the Video Error Duration	51
7.11.4.	Setting the Audio Error Duration	51
7.11.5.	Detecting Audio Over Level Faults	51
	7.11.5.1. Setting the Audio Over Level	51
	7.11.5.2. Setting the Audio Over Duration	51
7.11.6.	Detecting Audio Silence Faults	52
	7.11.6.1. Setting the Audio Silence Level	52
	7.11.6.2. Setting the Audio Silence Duration	52
7.11.7.	Detecting Audio Phase Reversal Faults	52
	7.11.7.1. Setting the Audio Phase Reversal Level	52
	7.11.7.2. Setting the Audio Phase Reversal Duration	53
7.11.8.	Detecting Audio Mono Faults	53
	7.11.8.1. Setting the Audio Mono Threshold Level	53
	7.11.8.2. Setting the Audio Mono Duration	53
7.11.9.	Detecting Loss of Primary Captioning	54
7.11.10.	Detecting Loss of Program Rating Duration	54
7.11.11.	Detecting Picture Freeze	
	7.11.11.1. Setting the Picture Noise Level	54
	7.11.11.2. Setting the Picture Freeze Duration	55
	7.11.11.3. Optimizing the Picture Noise Level and Picture Freeze	
7 4 4 4 0		
7.11.12.	Detecting Picture Black Duration	
7.12. UTILITIE	S	56
7.12.1.	Accessing Information About this Module and its Firmware	56
7.12.2.	Saving and Recalling Configurations	56
	7.12.2.1. Storing Configurations to the User Presets	56
	7.12.2.2. Recall Configurations from the User Presets	56
7.12.3.	Initiating a Software Upgrade	57
7.12.4.	Restoring the CEM to its Factory Default Configuration	57

	7.13. CLEAR FAULTS AND PEAKS		
8.	VIST	TALINK® CONFIGURATION	58
	8.1.	WHAT IS VISTALINK®?	58
	8.2.	AUDIO SETTINGS	58
		 8.2.1. Audio Source 8.2.2. Audio Freeze Mode 8.2.3. Audio Delay 8.2.4. Audio Buffer 	59 59 59 59
	8.3.	AUDIO BAR GRAPH	60
		 8.3.1. Bar Graph Size	60 61 61 61 61 61 62 63 63 63 63 64 65 65
	8.4.	AUDIO BAR GRAPH POSITIONS	65
	8.5.	 8.4.1. Enable 8.4.2. Setting the Horizontal Position of On Screen Windows 8.4.3. Setting the Vertical Position of On Screen Windows FAULT SETTINGS 	66 66 66
	-	 8.5.1. Loss of Video Duration	67 67 67 67 67 67 67 68 68 68 68 68 68 68 68
8.6. AUDIO CH		AUDIO CHANNELS	69

	8.6.1. 8.6.2.	Channel Output Select Analog Output Level	69 69
8.7.	FAULT CONDITIONS7		
	8.7.1. 8.7.2. 8.7.3. 8.7.4.	Mode Message Duration Determining What Items Will Generate the Fault Condition	70 70 70 71
8.8.	VIDEO A		72
	8.8.1. 8.8.2. 8.8.3. 8.8.4. 8.8.5. 8.8.6. 8.8.7. 8.8.8. 8.8.9. 8.8.10. 8.8.11. 8.8.12. 8.8.13.	Video Standard Loss of Video Genlock Source Free-Running Frequency Fine Phase 525 Fine Phase 625 NTSC Colour Phase PAL-B Colour Phase Video Lock Mode Video Lock Mode VITC 525 VITC 525 PESA 525 PESA 625	72 73 73 73 73 73 74 74 74 74 74 74 74
	8.8.14. 8.8.15	Default SID Mode	75
8.9.	FAULT V	VINDOWS	75
	8.9.1. 8.9.2. 8.9.3. 8.9.4. 8.9.5. 8.9.6. 8.9.7. 8.9.8.	Text Background Colour Text Opacity Background Opacity Setting the Horizontal Position of the Fault Windows Setting the Vertical Position of the Fault Windows Setting the Fault Window Font Size Setting the Blink Mode of the Fault Windows	76 76 76 76 76 76 76 77
8.10	. FAULT T	RAPS	77
8.11	. VIDEO C	ONTROLS	78
	8.11.1. 8.11.2. 8.11.3. 8.11.4. 8.11.5. 8.11.6. 8.11.7. 8.11.8. 8.11.9. 8.11.10. 8.11.10. 8.11.11. 8.11.12.	NTSC Setup Pedestal Line 21 Setup Pedestal. Composite Display Mode Video Level Hue Saturation Contrast Brightness H Blanking VBI Processing Y Filter Selection Wideband Y Frequency Response.	78 79 79 79 79 79 79 79 79 79 79 80

		8.11.13.	Chroma Filter Selection	80
	8.12	. WINDOW	V SETTINGS	80
		8.12.1. 8.12.2. 8.12.3. 8.12.4. 8.12.5. 8.12.6.	Text Background Colour Text Opacity Background Opacity Status Window 8.12.5.1. Setting the Horizontal Position of the Status Window 8.12.5.2. Setting the Vertical Position of the Status Window 8.12.5.3. Mode VITC Window 8.12.6.1. Setting the Horizontal Position of the VITC Window 8.12.6.2. Setting the Vertical Position of the VITC Window 8.12.6.3. Size	81 81 81 81 81 81 82 82 82 82 82 82
	8.13	. GENERA	AL	82
9.	JUM	8.13.1. 8.13.2. PERS	Frame Status Trigger Card Type	83 83 84
	9.1.	TERMIN	ATION JUMPERS	84
	9.2.	SELECTI	ING WHETHER LOCAL FAULTS WILL BE MONITORED BY THE GLOBAL STATUS	84
	9.3.	CONFIG	URING THE MODULE FOR FIRMWARE UPGRADES	84

Figures

4100		
Fig	gure 1-1: 7736CEM-A4 Block Diagram	3
Fig	gure 1-2: 7736CEM Block Diagram	3
Fig	gure 1-3: 7736CEM-A4-B Block Diagram	4
Fig	gure 2-1: 7736CEM Rear Panels	5
Fig	gure 4-1: LED Locations	9
Fig	gure 8-1: Audio Settings Tab	.58
Fig	gure 8-2: Audio Bar Graph Tab	.60
Fig	gure 8-3: Swatches Window	.63
Fig	gure 8-4: HSB Window	.64
Fig	gure 8-5: RBG Window	.64
Fig	gure 8-6: Audio Bar Graph Positions Tab	.65
Fig	gure 8-7: Fault Settings Tab	.66
Fig	gure 8-8: Audio Channels Tab	.69
Fig	gure 8-9: Fault Conditions Tab	.70
Fig	gure 8-10: Video and SID Tab	.72
Fig	gure 8-11: Fault Windows Tab	.75
Fig	gure 8-12: Fault Traps Tab	.77
Fig	gure 8-13: Video Controls Tab	.78
Fig	gure 8-14: Window Settings Tab	.80
Fig	gure 8-15: General Tab	.82

Tables

Table 4-1: Audio Channel Status LEDs	
Table 7-1: PPM Bar Graph Characteristics	
Table 7-2: Video/Audio Status Screen Items	
Table 7-3: Methods of Turning Windows and Bar Graphs On and Off	
Table 7-4: Possible Error Conditions to Produce a Fault	
Table 8-1: PPM Bar Graph Characteristics	

REVISION HISTORY

REVISION	DESCRIPTION	DATE
0.0	Preliminary	Feb 2004
1.0	First Release	Jun 2004
1.1	Balanced audio version added	Oct 2004
1.2	Remove references to GPIs Added warning to Colour bar control Fixed minor items	July 2005
1.3	Updated formatting	Dec 2009
1.4	Input lock modes added, PAL-M support added, Line-by-line Setup pedestal control added	May 2011
1.5	Added VistaLINK Configuration section	June 2012

Please Note: This version contains areas of gray text that are indicative of future software releases. These sections are to be used as information only and are subject to change. Some features will never be released. Some of these features may seem to work but they have not been completed and have not been verified by Evertz.

Information contained in this manual is believed to be accurate and reliable. However, Evertz assumes no responsibility for the use thereof nor for the rights of third parties, which may be affected in any way by the use thereof. Any representations in this document concerning performance of Evertz products are for informational use only and are not warranties of future performance, either expressed or implied. The only warranty offered by Evertz in relation to this product is the Evertz standard limited warranty, stated in the sales contract or order confirmation form.

Although every attempt has been made to accurately describe the features, installation and operation of this product in this manual, no warranty is granted nor liability assumed in relation to any errors or omissions unless specifically undertaken in the Evertz sales contract or order confirmation. Information contained in this manual is periodically updated and changes will be incorporated into subsequent editions. If you encounter an error, please notify Evertz Customer Service department. Evertz reserves the right, without notice or liability, to make changes in equipment design or specifications.

This page left intentionally blank

1. OVERVIEW

The 7736CEM line of component serial digital to composite analog video converters are broadcast quality encoders with an extensive list of additional features. An audio de-embedder with high quality audio digital to analog conversion can be purchased with the encoder to create a video/audio frame synchronizer/conversion package. In addition, Evertz fault monitoring processing will analyze and report video and audio problems via an On-Screen-Display (OSD), or remotely via VistaLINK_® SNMP.

The 7736CEM product features various video processing functions such as VITC, closed captioning and SID extraction during the encoding process, as well as monitoring video for black and freeze conditions. The audio is processed, to extract level information for creating and displaying level and phase bar graphs. In addition, the audio is analyzed for periods of high level, silence, mono, and out-of-phase conditions. All of this status information is displayed on the monitoring analog output via on-screen display (OSD) overlay.

The Features of all 7736CEM's are:

- One component serial digital input (525 or 625).
- One re-clocked component serial digital output.
- EDH analysis on SDI input.
- Four composite analog video outputs WITHOUT OSD text or audio bargraphs.
- Internal processing to maintain 10 bit digital video quality.
- 10 bit output video digital to analog conversion.
- One monitoring quality video output with OSD text and bargraph graphics.
- User adjustable output video processing functions: black level (brightness), gain (contrast), hue, and saturation.
- User selectable luminance and chrominance filters for different applications (i.e. broadcast vs. studio).
- User selectable horizontal blanking interval width: narrow, normal.
- One composite analog reference input (NTSC or PAL-B) on BNC. 75 Ohm or high-Z, jumper configurable input impedance.
- One frame video synchronizer (with +S option).
- Infinitely variable output phase.
- Freeze modes: black, freeze.
- Adjustable free running frequency.
- Built-in colour bar generator.
- VU/PPM bargraph level Indicators.
- Decodes vertical interval time code (VITC) and "burns" the time code into the picture.
- Decodes PESA format Source ID (8 characters) or Evertz format VITC Source ID (5 or 9 characters) and burns the ID into the picture.
- A comprehensive on screen display is available to configure the various features of the module.
- Flexible configuration of the text and audio bar graph information displays.
- An extensive list of error conditions can be monitored and fault conditions can be configured from these conditions.
- On screen messages can be triggered by the configured fault conditions.

The Features of "-A4" Options are:

- One group (4 channels) of synchronous 20-bit audio is de-multiplexed from the incoming digital video.
- 2 unbalanced (or balanced) AES audio inputs (up to 48kHz, 24 bits) on BNC (terminal strip).
- User selects EITHER the de-embedded audio or the input AES audio.
- The selected audio is delayed equivalently to the video delay with the +S option.
- 4 high quality 24 bit audio channels are output (analog) as balanced on 2 removable barrier strips.
- Low impedance outputs (66Ω).
- Analog audio output levels are adjustable.
- Additional audio delay of up to 5 seconds.
- Additional audio advance of up to 1 frame, depending on video delay.
- Loss of video modes: pass audio, mute audio.

1.1. FUNCTIONAL DESCRIPTION

270Mbps component SDI video is converted to 10 bit parallel data and encoded to high quality composite analog video. Various video processing functions (gain, saturation, black level, etc) are performed during the encoding process.

A re-clocked copy of the component SDI video is available on the "SDI OUT" BNC. This output will not be present if the card is unplugged or the power to the frame is turned off.

Digital audio is de-multiplexed from the incoming SDI video. External digital AES audio is also received via input BNC's (unbalanced) or removable terminal strip (balanced). The user can select either of these two sources for further processing. The selected digital audio is delayed (with +S option) to match the delay experienced by the video in the video synchronizer. In addition, the user can select additional audio delay. On the 7736CEM-A4, the audio is converted to balanced analog audio through a high quality 24 bit D to A converter and delivered to the outside world via removable terminal strips.

The audio is also processed to extract level and phase information. The CPU creates the level and phase bar graphs and writes them out to the on screen display (OSD) memory.

VITC, closed captioning and Source ID are extracted from this input stream. In addition, the video is monitored for black and freeze conditions. The CPU reads this raw data and extracts time code, program rating and the closed captioning information. In addition, analysis of the data is performed to determine fault or error conditions. The time code, program rating, source ID message and faults are also written to the OSD memory for display on the monitoring output.

This video goes out through two paths; a high quality component to composite converter (composite encoder) and a monitoring quality composite encoder with the OSD "burn-ins". The hardware mixes (keys) the on screen text and bar graphs display information onto the monitoring output video stream.

The CPU also gets pushbutton and toggle switch commands from the card edge controls and draws extensive menus for configuring the operation of the card.

2. INSTALLATION

The 7736CEM modules come with a companion rear plate and occupy one or two slots in the 7700FR frame.

Figure 2-1 shows a picture of each of the rear panels. For information on mounting the rear plate and inserting the module into the frame see the 7700FR chapter section 3.

The 7736CEM cards must be inserted into slots with the correct rear panel. Some cards have physical differences and some have functional differences and the associated labels will be misleading.

Figure 2-1: 7736CEM Rear Panels

2.1. VIDEO IN AND OUT

Connect a source of component serial digital (525 or 625 line) video to the top BNC labeled SDI IN. A reclocked version of the input video is available on the SDI OUT BNC. Connect a reference black signal to the REF IN BNC if frame synchronization is desired (+S only). Broadcast quality composite analog video is available on the ANALOG OUT BNCs. Monitoring quality video with text and audio bar graphs are available on the MON OUT output BNC. If the card is not present or the power is off, there will be nothing on any of the outputs.

3. SPECIFICATIONS

3.1. SERIAL VIDEO INPUT

Standard:	SMPTE 259M-C – 525 or 625 line component
Number of Inputs:	1
Number of Re-	1
Clocked Outputs:	
Connector:	BNC per IEC 169-8
Return Loss:	>15dB to 270MHz
Embedded Audio:	SMPTE 272M-A
Frequency Lock	±75ppm from nominal
Range:	
Lock Up Time on a	TBD
Hot Switch:	

3.2. ANALOG BROADCAST VIDEO OUTPUT

Standard:	NTSC, SMPTE 170M
	PAL, ITU624-4
	PAL-M
Number of Outputs:	4
Connector:	BNC per IEC 169-8
Signal Level:	1V nominal
Output Impedance:	75 Ohm
DC Offset:	0V +/- 50mV
Return Loss:	>45dB to 10MHz
Frequency Response:	<+/- 0.1dB to 4 MHz (response will depend on selected filtering)
Differential Phase:	< 0.5° (< 0.3° typical)
Differential Gain:	< 0.5% (< 0.3% typical)
SNR:	>75dB (black video, 100kHz to 5MHz)
Output Level Control Range:	±10%
Black Level Control Range:	±7.5 IRE
Chroma Level Control Range:	±10%
Hue Control Range:	±15 deg. (NTSC only)
Minimum Delay:	3 µs
Maximum Delay:	1 frame + 3 μs (+S option only)

3.3. REFERENCE VIDEO INPUT

Standard:	NTSC, SMPTE 170M
	PAL, ITU624-4
Number of Inputs:	1
Connector:	BNC per IEC 169-8
Signal Level:	1V nominal (0.5V to 1.5V)
Frequency Lock Range:	±75ppm from nominal
Input Impedance:	75 Ohm or High impedance (jumper selectable)
Return Loss:	>25dB to 10MHz
Max Subcarrier Jitter:	< 3 degrees
Free-Running	> +/- 10ppm (> +/- 270Hz)
Frequency Control	
Range:	

3.4. ANALOG MONITORING VIDEO OUTPUT

Standard:	NTSC, SMPTE 170M
	PAL, ITU624-4
	PAL-M
Number of Outputs:	1
Connector:	BNC per IEC 169-8
Signal Level:	1V nominal
Output Impedance:	75 Ohm
Deturn Leee	

3.5. ANALOG AUDIO OUTPUTS (-A4 ONLY)

Number of Outputs:	4
Туре:	Balanced analog audio
Connector:	Two 6 pin removable terminal strips
Output Impedance:	66Ω balanced
Sampling Frequency:	48kHz
Signal Level:	0dBFS => 12 to 25dBu (user settable)
Frequency Response:	<+/- 0.05dB (20Hz to 20kHz)
Dynamic Range:	24 bits when AES inputs selected,
2	20 bits when embedded audio selected
THD+N:	<0.001% (>100dB) @ 1kHz, -1dBFS
Crosstalk:	<-105dB (20Hz to 20kHz)
DC Offset:	<+/- 30mV
SNR:	>110dB "A" Weighting
Inter-Channel Phase	<+/-1° (20Hz to 20kHz)
Error:	· · · · ·

3.6. UNBALANCED AES AUDIO INPUTS (-A4 ONLY)

Number of Inputs:	2
Input Standard:	SMPTE 276M, single ended synchronous or asynchronous
-	PCM AES
Connectors:	BNC per IEC 169-8
Resolution:	Up to 24 bits
Input Sampling Rate:	32kHz to 48 kHz
Minimum I/O Delay:	3.5msec

3.7. BALANCED AES AUDIO INPUTS (-A4-B ONLY)

Number of Inputs:	2
Input Standard:	AES3-1992, balanced synchronous or asynchronous PCM AES
Connectors:	One 6 pin removable terminal strip
Impedance:	110 Ohm
Resolution:	Up to 24 bits
Sampling Rate:	32kHz to 48 kHz
Input Level:	2V to 7V p-p
Minimum I/O	3.5msec
Delay:	

3.8. ELECTRICAL

+ 12VDC
9.25 Watts (7736CEM)
16.75 Watts (-A4 or –A4-B option)
Complies with FCC Part 15, class A and EU EMC directive

3.9. PHYSICAL

7700 Frame Mounting:

Number of 1 for non-audio versions Slots:

2 for audio version (-A4, -A4-B)

4. STATUS LEDS

Figure 4-1: LED Locations

4.1. MODULE STATUS LEDS

MODULE OK: This Green LED will be on when the module is operating properly.

LOCAL FAULT: This Red LED makes it easy to identify one module in a frame that is missing an essential input or has another fault.

The LED will blink on and off if the microprocessor is not running.

The LED will be on when there is a fault in the module power supply or a user configurable error condition exists.

- **NTSC/PAL:** The NTSC/PAL Green LEDs (NTSC on the top, away from the PCB and PAL on the bottom, closest to the PCB) will indicate the video standard of the SDI video input. If video is removed, both LEDs will go off. The NTSC LED will illuminate when PAL-M video mode is selected and video is applied. If the input standard is opposite to the user selected standard, the LED will flash.
- **GENLOCKED:** This Green LED is on solid if the genlock source is present and the user has turned on genlocking.

It is flashing if the user has turned on genlocking and the genlock source is not present.

It will be off if the user has turned genlocking off.

AUDIO: This Green LED is on solid when the user selected audio is present. It will flash when some, but not all, of the audio channels are present. If no audio is present, it will be off.

For instance, if external AES audio is selected (via. the OSD menu) and only one of the two AES channels is present, then this LED will flash.

4.2. AUDIO STATUS LEDS

Four LEDs located on the lower end of the module (near the card extractor) indicate which audio channels are present. Audio channel 1 LED is located closest to the center of the module. Digital audio presence is determined by the AES receiver lock indicator (when AES input is selected). When embedded audio is selected, the channel must be present on the selected group for the LED to illuminate.

Audio LED	Colour	Audio Channel Status
1	Off	No channel 1 present.
1	Green	Channel 1 present.
2	Off	No channel 2 present.
2	Green	Channel 2 present.
2	Off	No channel 3 present.
3	Green	Channel 3 present.
A	Off	No channel 4 present.
4	Green	Channel 4 present.

Table 4-1: Audio Channel Status LEDs

5. AUDIO LEVELS, HEADROOM, CLIPPING AND THE BAR GRAPHS

This section contains notes to understand how the 7736CEM-A4 relates analog audio levels, digital audio levels, and the displayed bar graph levels.

Before you can calibrate the audio digital to analog converter, you must know a couple of system issues specific to your application. What is your analog reference level and how much headroom is there in the digital audio signal? By adding these two values together, you will get the analog output level that will just begin to saturate the digital word (This is the highest level that can be represented without distortion with the digital numbers). This level is called 0dB FS (FS stands for "full scale"). For instance, if your analog program reference level is 4dBu and you have 20dB of headroom in the "digital world", then 0dB FS will correspond to an analog level of 24dBu. Once the audio output level is calibrated, when you apply a digital level of –20dB FS, the analog output signal will be 4dBu.

The SDI embedded audio, the AES input audio and the bargraphs are all based on the same digital quantized signal level. The AES/EBU bargraph ballistics mode is scaled to 0dB FS while the other modes have a user selectable headroom. For this reason, use the AES/EBU mode for calibrating audio levels.

When a full-scale digital signal is input, you will get a peak analog output signal level that is set by the *analog level* controls. The *Headroom* control sets the 100% program reference level (0 dB on the scale) with respect to the Peak Output Level set by the *analog level* controls. For example, if the Peak Output Level is set to 24 dBu and the *Headroom* is set to 20 dB, then the 0 dB reference on the bar graphs will correspond to an output level of 4 dBu. This level will be achieved when a digital input signal of –20 dB FS is applied at the input. Therefore, the following relationship is always maintained:

PGM reference level + headroom = peak output level

NOTE: The VU and PPM standards were set before the digital revolution. These standards deal with headroom levels that are quite a bit lower what should be used in the digital world. Also, most of the bar graphs only display a few dB above the program reference level. In a digital world, one needs to leave around 20 dB of headroom to keep most material away from clipping.

For best results, follow these steps when setting up the audio bar graphs and output levels:

- 1. Set the *Headroom* control to the desired value. Remember that this is the value in dB between the 100% reference level (expressed in dB FS) and saturation level of the digital input word (0 dB FS). It will also correspond to the value in dB between the analog output level when a reference level is input and the maximum output level set by the *analog level* controls.
- 2. Pick the bar graph type and mode. This selection will configure the bar graphs with the defaults dictated by the standards. It will also set the Peak Output Level and the 0dB reference level to adhere to the standard and the desired headroom.
- 3. Adjust any of the bar graph configuration parameters to customize the display of the graphs.
- 4. Save the card configuration into a preset so that you can recall it if any card parameter is tampered with.

6. AUDIO ALARM CALIBRATION PROCEDURE

This section contains detailed description on setting the various audio warning/error detection parameters.

Some of the audio alarm detection algorithms are dependent on the state of other audio alarm detectors. For instance, the mono detection algorithm will not use periods of silence as determined by the silence detection. For this reason, the following sequence should be used to calibrate the audio alarms. The items in *italics* refer to menu items in the CEM. See section 7.11 for a complete description of the fault definition menu items.

6.1. CALIBRATE AUDIO SILENCE DETECTION

- 1. Supply the card with your plant's noisiest audio feed without any audio program material present. This will be a baseline noise level to calibrate the silence detector.
- 2. Turn off all sources of errors in a *Fault Condition* and assign *Audio Silence* as the only error. Also, make sure that you set the *Fault Duration* to a small number of frames so that you will see when the error condition disappears.
- 3. Set the *Silence Duration* to 0.5 sec so that you can see the results of adjusting the *Silence Level* parameter without getting confused with the detection time.
- 4. Adjust the audio *Silence Level* until the *Fault Condition* begins to go active. This will be the noise floor level. Raise the *Silence Level* a few dB to make the detector insensitive to this noise level.
- 5. Set the *Silence Duration* to a time appropriate to your application. This should be set to a value longer than your worst case acceptable quiet period.

6.2. CALIBRATE AUDIO PHASE REVERSAL DETECTION

- 1. Supply the card with a stereo signal that has the phases reversed. Make sure that the material is typical of normal content for this channel.
- 2. Turn off all sources of errors in a *Fault Condition* and assign *Phase Reversal* as the only error. Also, make sure that you set the *Fault Duration* to a small number of frames so that you will see when the error condition disappears.
- 3. Set the *Phase Reversal Duration* to 0.5 sec so that you can see the results of adjusting the *Phase Reversal Level* without getting confused with the detection time.
- 4. Adjust the Phase Reversal Level so that the Fault Condition detects the phase reversal.
- 5. Set the *Phase Reversal Duration* to a time period appropriate to your application. Warning: Periods of silence (below the *Silence Level*) will extend this duration. In other words, periods without audio content are not included in the phase reversal detection. Warning: Stereo material with long periods of dissimilar left/right content (i.e. music with plenty of panning) may cause the phase reversal detector to fire. It is best to set the *Phase Reversal Duration* to a value larger than what you would expect.

6.3. CALIBRATE AUDIO MONO DETECTION

- Supply the card with a stereo signal that originated from mono material and that has a large amount of un-correlated noise added to each channel. This will allow you to set the *Mono Threshold* to a value that will detect the mono condition in the presence of noise.
 Warning: Make sure that the material is in-phase. Mono material will not be detected if it is out of phase.
- 2. Turn off all sources of errors in a *Fault Condition* and assign *Mono* as the only error. Also, make sure that you set the *Fault Duration* to a small number of frames so that you will see when the error condition disappears.

- 3. Set the *Mono Duration* to 0.5 sec so that you can see the results of adjusting the *Mono Threshold Level* without getting confused with the detection time.
- 4. Adjust the *Mono Threshold Level* so that the *Fault Condition* detects the mono material in the presence of noise.
- 5. Set the *Mono Duration* to a time period appropriate to your application.

Warning: Periods of silence (below the *Silence Level*) will extend this duration. In other words, periods without audio content are not included in the mono detection.

Warning: Stereo material with long periods of similar left/right content (i.e. talking heads in a news cast) may cause the mono detector to fire. It is best to set the *Mono Duration* to a value larger than what you would expect.

6.4. DEFINE THE FAULT CONDITION(S)

- 1. A *Fault Condition* is defined as a group of one or more problems grouped together that will create a fault when any one of the problems exist. Decide what grouping of error conditions will generate a fault by setting the appropriate condition to Yes in the *Fault Condition* menu.
- 2. Set the *Fault Duration* to either *Until Reset* or to a time value. This is how long the condition will stay active after the conditions generating the fault go away.
- 3. Configure a *Fault Message*. Enter the text to display on screen, its H and V position, and its characteristics (opacity, colour, etc).
- 4. Assign the Fault Condition to an output contact closure (GPO) if it is desired.

7. ON SCREEN MENUS

7.1. NAGIVATING THE ON SCREEN MENU SYSTEM

A toggle switch and pushbutton allow card edge navigation of a set of on-screen menus used to configure the card.

To enter the on-screen menu system, press the pushbutton once. This will bring you to the main setup menu where you can use the toggle switch to move up and down the list of available sub menus. An arrow (>) moves up and down the left hand side of the menu items to indicate which item you are currently choosing. Once the arrow is on the desired item, press the pushbutton to select the next menu level.

On all menus, there are two extra selectable items: *Back* and *Exit*. Selecting *Back* will take you to the previous menu (the one that was used to get into the current menu) while *Exit* will return the display to its normal operating mode. On the main menu, BACK and EXIT will both take you to the normal operating mode.

Once in a sub menu, there may be another menu layer, or there may be a list of parameters to adjust. If there is another set of menu choices, use the toggle switch to select the desired menu item and press the pushbutton.

To adjust any parameter, use the toggle switch to move up or down to the desired parameter and press the pushbutton. The arrow will move to the right hand side of the line (<) indicating that you can now adjust the parameter. Using the toggle switch, adjust the parameter to its desired value. If the parameter is a numerical value, the number will increase if you lift the toggle switch and decrease if you push down on the toggle switch. If the parameter contains a list of choices, you can cycle through the list by pressing the toggle switch in either direction.

When you have stopped at the desired value, depress the pushbutton. This will update the parameter to the selected value and move the arrow back to the left side of the parameter list (>). Continue selecting and adjusting other parameters or use the BACK or EXIT commands.

7.2. CHANGING TEXT FIELDS

Some of the controls of the OSD menu allow you to adjust a text-based field. Editing a line of text can be a little tedious with a toggle switch and a pushbutton, but it can be done with the following procedure:

1. Select the text to edit by pressing the pushbutton when the menu item is selected. This will take you to a screen that has the label/name of the text being edited and a white box. The white box contains the text to change and is drawn to the maximum size of the text field.

Note the arrow (^) under the character. This indicates which character you will be changing with the toggle switch.

- 2. Use the toggle switch to change the first character of the text message.
- 3. Once you have selected the desired character, press the pushbutton. This will advance the arrow to the next character. Continue changing the remainder of the characters in the same way.

- 4. There are two special characters to help you enter the text: a backspace character (left pointing arrow), and an end of line character (stop sign):
- Left Arrow: If you have accidentally advanced to the next character and want to go back, select the left arrow with the toggle switch. When you press the pushbutton, you will go back to the previous character. This will save you from having to complete the editing and re-edit it to change the mistake.
- **Stop sign:** If you are done changing the text, and the new text is shorter than old text, you can terminate the line with a stop sign. When you use the pushbutton after selecting the stop sign, any remaining characters in the text field will be erased and you will return to the menu structure.
 - 5. You are done editing when you reach the end of the field (maximum length), or you select the stop sign and press the pushbutton.

7.3. ON SCREEN DISPLAY – MAIN MENU

Audio	Configuration of the parameters associated with analog audio inputs and audio multiplexing	
Video/SID	Controls for the operation of video processing.	
Bar graphs	Configuration of the audio level and phase bar graphs.	
On-screen display configuration	Positioning controls and the on/off state of all windows and bar graphs. Configuration of the text window colours and opacity levels.	
GPO configuration	Configuration of the General Purpose frame status control.	
Fault definitions	Definition and calibration of the fault conditions. Configuration of the fault message windows.	
Utilities	Card preset management, data logging and various debug and maintenance features.	
Clear faults and peaks	An easy to access "clear fault state and bar graph peaks" command.	

The OSD menu is arranged in a layered structure that groups similar configuration items together. The following section gives a brief description of the first level of menus that appear when you enter the OSD screens. Selecting one of these items will take you to the next menu level. Sections 7.4 to 7.13 provide detailed descriptions of each of the sub menus. The tables in sections 7.4 to 7.13 are arranged in an indented structure to indicate the path taken to reach the control. Menu items or parameters that are underlined indicate the factory default values.

7.4. CONFIGURING THE AUDIO CONTROLS (-A4)

The *Audio* menus are used to configure parameters associated with the analog audio outputs and the audio de-multiplexing. The chart below shows the items available in the *Audio* menu. Sections 7.4.1 to 7.4.6 give detailed information about each of the parameters. Many of the menu items are the same for the channel 1/2 and 3/4 channel pairs. For simplicity only the menu items for the channel 1/2 channel pair are shown in the manual.

Audio source	Selects the source of audio. It will either be the source group or external AES signals.
Audio freeze mode	Selects what action to take when video is gone
Audio delay	Add/remove audio delay
Audio buffer	Monitor audio delay buffer state
Ch1 processing	Configures audio routing and processing for channel 1
Ch2 processing	Configures audio routing and processing for channel 2
Ch3 processing	Configures audio routing and processing for channel 3
Ch4 processing	Configures audio routing and processing for channel 4
Ch 1 gain	-A4: Channel 1 output level control
Ch 2 gain	-A4: Channel 2 output level control
Ch 3 gain	-A4: Channel 3 output level control
Ch 4 gain	-A4: Channel 4 output level control

7.4.1. Selecting the Audio Source

Au	ıdio	
	Audio Source	
	Group 1	
	Group 2	
	Group 3	
	Group 4	
	AES	

Up to 4 groups of audio may be embedded on SDI video. This control selects the group ID of the de-multiplexed audio. In addition, the external AES source may be selected.

In the video-only version (non –A4), this control is present so that you can still monitor the presence/absence of the audio group. However, no audio is processed (there is no audio daughter board) and you will not be able to monitor the levels/phase.

7.4.2. Audio Freeze Mode (-A4)

Au	dio	
	Auc	lio freeze
	mo	de
		<u>pass</u> mute

Two selectable actions can take place when input video is removed; pass and mute.

If it is desirable to maintain audio through the encoder (only valid with AES inputs), then set this control to *pass*. When set to mute, the audio will automatically be muted when video is removed.

7.4.3. Additional Audio Delay (-A4)

Audio	
Aua	lio delay
	<u>0</u>
	-37ms to
	5sec in
	0.5ms
	increments

In addition to delaying the audio the same amount that the video is being delayed (in the video frame synchronizer), additional user requested delay may be added or removed with this control.

WARNING: It takes approximately 1 minute, 40 seconds to adjust the audio delay by one second. This is required by the buffer management algorithm when changing the audio buffer size at a 1% rate without muting the audio. This long buffer adjusting will happen on power-up or when a new user supplied value is set with this control. However, the audio is still usable while the buffer is being adjusted. This is good for "On-Air" adjustment of audio delays!

NOTE: Advancing audio can only happen when video is undergoing a delay that is greater than the audio! If the system configured video delay becomes too small, the audio buffer shrinks to its smallest delay and stays at that value.

7.4.4. Monitoring the Audio Buffer Tracking (-A4)

Video/SID		This item dis
Audio buffer		states:

This item displays the status of the audio tracking buffer. It can be one of these states:

- Emptying (-1%)
- Emptying (-30 ppm)
- locked
- Filling (30 ppm)
- Filling (1%)

1% filling or emptying will have a slight pitch change that is near the edge of human perception for normal audio program material. This mode will be engaged when a large amount of delay needs to be changed quickly (video frame drops/repeats).

30ppm filling or emptying will be used to make minor delay buffer changes.

"Locked" will indicate that the video and audio buffers match.

The delay of the audio through the audio buffer always tracks the video except when the video frame synchronizer drops or repeats frames of video or the user supplies a different phase of input video. Unfortunately, at these boundary conditions, we cannot simply drop or repeat sections of audio. A rate conversion process is used to fill or empty the buffer to the needed level. The process must be spread out over a period of time so that the action is not audible.

This indicator is mainly used at the Evertz factory and may also be useful to monitor to help in debugging system issues.

7.4.5. Audio Channels Processing (-A4)

There are 4 menu items to adjust the routing and processing of the audio outputs. For simplicity only the menu for channel 1 will be shown in the manual.

Audio	
Ch1 processing	
	<u>Ch1</u>
	Ch2
	Ch3
	Ch4
	(Ch1+Ch2)/2
	(Ch3+Ch4)/2
	Mute

Basic audio channel manipulation is possible with this control.

Any input channel can be routed to any output channel. A mono mix of either L/R input pair can also be performed. Muting an output is also possible.

7.4.6. Setting the Analog Levels (-A4)

There are 4 menu items to adjust the levels of each of the analog audio outputs. For simplicity only the menu for channel 1 will be shown in the manual.

The channel output level is adjusted with this control. It has a range of approximately 12 dB with 1/10 dB resolution. The displayed value is the analog output level (dBu) corresponding to a 0dB FS digital input signal.

7.5. CONFIGURING THE VIDEO AND SOURCE ID CONTROLS

The *Video/SID* menus are used to configure parameters associated with the video processing functions and the VBI decoders. The chart below shows the items available in the *Video/SID* menu. Sections 7.5.1 to 7.5.20 give detailed information about each of the parameters.

7700 MultiFrame Manual 7736CEM Composite Encoder with Monitoring

Video processing	Selecting this item takes you into the Video Processing Menu
Video standard	Selects the input video standard
Lock mode	Selects one of two behaviors when the incoming video switches/changes
Loss of video	Selects the action to take when the input video is missing
Genlock source	Selects the source of genlock timing including free-running.
Free-run freq	Sets the VCXO free-running frequency
525 Fine phase	Sets the fine phase position of the output signal with respect to NTSC Genlock reference input.
625 Fine phase	Sets the fine phase position of the output signal with respect to PAL Genlock reference input.
525 H phase	Sets the horizontal phase of the output signal to the NTSC Genlock reference input.
625 H phase	Sets the horizontal phase of the output signal to the PAL-B Genlock reference input.
H Delay	Status display that shows the current horizontal input to output delay
525 V phase	Sets the vertical phase of the output signal to the NTSC Genlock reference input.
625 V phase	Sets the vertical phase of the output signal to the NTSC Genlock reference input.
V Delay	Status display that shows the current vertical input to output delay
NTSC Colour Field Phase	Sets the colour field phase of the NTSC output video
PAL-B Colour Field Phase	Sets the colour field phase of the PAL-B output video
Audio buffer	Status of audio delay buffer
525 VITC line	Sets the line number for decoding Vertical Interval Time Code in NTSC/525 line video.
625 VITC line	Sets the line number for decoding Vertical Interval Time Code in PAL/625 line video.
525 PESA line	Sets the line number for decoding PESA format Source ID in NTSC/525 line video.

625 PESA line	Sets the line number for decoding PESA format Source ID in PAL/625 line video.
Default SID mode	Selects whether the <i>Default SID msg</i> will be shown when there is no source ID on the incoming video.
Default SID mode	Sets the message that will be shown when <i>Default SID mode</i> is enabled and the SID window is turned on.

7.5.1. Setting the Video Standard

Video/SID		
Video standard		
NTSC/525		
PAL-B/625		
Auto		
PAL-M/525		

The video standard is selected with this control.

Warning: If you power up the card in a standard opposite to the standard that is being applied as the genlock source, the OSD will not be readable to change the standard. You must remove the genlock signal change the standard, then re-apply the genlock.

In *Auto* mode, the Genlock reference video standard is used to determine what standard to use. If Genlock video is not present, the input video standard is used. PAL-M genlock is not supported; *Auto* mode is not available for PAL-M operation. If a PAL-M signal is applied, it will be mistaken as NTSC.

7.5.2. Selects Input Video Lock Mode

This control configures how the input video locks when upstream video is switched or disturbed. *Clean* mode will freeze on any H or V mistiming while *Fast* mode will assume an upstream synchronous switch and not freeze until the video has been missing for a number of lines.

Background and further details:

A frame synchronizer has two main features; to re-time a video signal to any arbitrary timing (provided by the Genlock reference input) and to double buffer the video so that if it goes away, a good "frozen" picture can be displayed. To display a good picture, the input must be very sensitive to changes or problems so that the buffered video that is going to be displayed is not overwritten by bad content. Also, when new video is applied, care must be taken to verify the new video H phase, V phase and standard before "unfreezing". For this type of operation, set this control to *Clean* mode.

Many routing switchers offer the ability to switch between inputs on a specific line as timed with the Genlock reference video signal. If all input signals are also referenced to the same Genlock and they are all timed such that they arrive at the router with the same phase, then it is possible to always switch on the same line of video. This is called a "synchronous" switch.

If this synchronous switch is fed into a frame sync, it will freeze for a number of frames until it verifies the new video structure. Sometimes this freeze is not desirable. The *Fast* mode will assume that you have properly timed up all input video sources and will postpone freezing until the video has actually gone away for a number of lines. However, if the inputs are not properly timed, the output video active picture will make a vertical jump for one frame before it re-acquires the new video's vertical structure. Also, if the switch takes place in active video and not on line 10 (but no earlier than line 6), there will be a frame of garbage video data.

7.5.3. Selects the Action to Take when Input Video Is Missing

Video/SID		
v ic	100/0	סונ
	Loss of video	
	<u>Freeze,</u>	
		Black

The user can either have the output video go to black or freeze the last good video picture at the input with this control.

7.5.4. Genlock Source Selection

Video/S	SID		
Gei	Genlock source		
	Card ref,		
	Ref. 1,		
	Ref. 2,		
	input video,		
	none,		
	not		
	available		

This control allows you to select the reference video for the frame synchronizer output timing. The reference may either be an externally supplied colour black or you may use the input video as a reference. Optionally, the synchronizer can be free-run if the "*none*" option is selected.

If the card is installed in a 7700FR-G frame, two reference inputs are available on the frame that supplies video to every card. Either of these two inputs may be selected as reference sources.

When genlocking to the input video, make sure to adjust the video H and V output phase controls to set the total processing delay. The H and V Delay indicators show you the time-of-flight of the video and audio through the frame synchronizer.

Not available will be displayed if the +S option was not purchased.

7.5.5. Setting the Free-Running Frequency

Video/SID		This control allows you to calibrate the free-running frequency of the on-board
	Free-run freq	Voltage Controlled crystal Oscillator (VCXO). This oscillator provides the time-
-256 to 256 <u>0</u>		base when either operating without a reference input (free-running) or when running with a reference and the reference video is removed.
		 To calibrate the free-running frequency, use this or a similar procedure: Turn off genlocking with the "Genlock source" control or remove reference video from the reference input. Wait for the VCXO to stabilize at its free-running frequency. Apply the composite analog monitoring output video to a vector scope that is externally referenced to the signal (usually plant reference black) that you are trying to frequency match. Adjust this control until the vectors spin slowly. Turn genlocking back on or apply reference video.

7.5.6. Setting the Fine Phase of the Output Video – NTSC/PAL-M/525 Video

Video/SID			
	525	5 fine phase	
		-128 to 127	
		<u>0</u>	
		_	

With this control, you can set the horizontal fine phase timing of the output video with respect to the Genlock when operating in NTSC/525 or PAL-M/525 video mode and locking to the reference input (this control is not available when locking to the input video). Increasing the value will delay the output video. There is approximately 250 ns range on this control.

Warning: For a set output horizontal phase, there are a few *fine phase/H phase* combinations that will achieve the same position. For best results, set this control to 0, set the H phase to get within 37ns of the desired position, then adjust this control to get closer.

7.5.7. Setting the Fine Phase of the Output Video – PAL-B/625 Video

With this control, you can set the horizontal fine phase timing of the output video with respect to the Genlock when operating in PAL/625 video mode and locking to the reference input (this control is not available when locking to the input video). Increasing the value will delay the output video. There is approximately 250 ns range on this control.

Warning: For a set output horizontal phase, there are a few *fine phase/H phase* combinations that will achieve the same position. For best results, set this control to 0, set the H phase to get within 37ns of the desired position, then adjust this control to get closer.

7.5.8. Setting the Horizontal Phase of the Output Video – NTSC/PAL-M/525 Video

Video/S	SID
525	i H phase
	0 to 1715
	<u>0</u>

With this control, you can set the horizontal timing of the output video with respect to the Genlock reference input when operating in NTSC/525 or PAL-M/525 video mode. Increasing the value will delay the output video in onesample increments.

Warning: For a set output horizontal phase, there are a few *fine phase/H phase* combinations that will achieve the same position. For best results, set the fine phase control to 0, set this control to get within 37ns of the desired position, then adjust the fine phase control to get closer.

7.5.9. Setting the Horizontal Phase of the Output Video – PAL-B/625 Video

Video/S	ID	
625	H phase	
	0 to 1727	
	<u>0</u>	

With this control, you can set the horizontal timing of the output video with respect to the Genlock reference input when operating in PAL/625 video mode. Increasing the value will delay the output video in one-sample increments.

Warning: For a set output horizontal phase, there are a few *fine phase/H phase* combinations that will achieve the same position. For best results, set the fine phase control to 0, set this control to get within 37ns of the desired position, then adjust the fine phase control to get closer.

7.5.10. Monitoring the Horizontal Delay between the Input and Output Video

Vic	deo/SID	
	H Delay	

This item displays the horizontal delay between the input and output video. This value is useful to monitor while you are adjusting the H phase parameters and debugging system issues. One count is equivalent to 8 clocks of 27Mhz video.

7.5.11. Setting the Vertical Phase of the Output Video – NTSC/525 or PAL-M/525 Video

Video/SID		
	525 V phase	
	0 to 524	
	<u>0</u>	

With this control, you can set the vertical timing of the output video with respect to the Genlock reference input when operating in 525 video modes. Increasing the value will delay the output video in one-line increments.

7.5.12. Setting the Vertical Phase of the Output Video – PAL-B/625 Video

Video/SID		
625	5 V phase	
	0 to 624	
	<u>0</u>	

With this control, you can set the vertical timing of the output video with respect to the Genlock reference input when operating in 625 video mode. Increasing the value will delay the output video in one-line increments.

7.5.13. Monitoring the Vertical Delay between the Input and Output Video

Vic	deo/SID	
	V Delay	

This item displays the vertical delay between the input and output video. This value is useful to monitor while you are adjusting the V phase parameters and debugging system issues.

7.5.14. Setting the Colour Field Phase of the Output Video – NTSC Video

With this control, you can set the colour field phase of the output video with respect to the Genlock reference input when operating in NTSC/525 video mode.

The correct value for this register will depend on the reference to output video phase. If the output video is later than the reference video, but less than one field, then setting this control to "0" will make the output video have the same colour field relationship to the genlock.

7.5.15. Setting the Colour Field Phase of the Output Video – PAL-B Video

Video/SID	
PA	L-B C phase
	0 to 3
	<u>0</u>

With this control, you can set the colour field phase of the output video with respect to the Genlock reference input when operating in PAL-B/625 video mode.

The correct value for this register will depend on the reference to output video phase. If the output video is later than the reference video, but less than one field, then setting this control to "0" will make the output video have the same colour field relationship to the genlock.

7.5.16. Monitoring the Audio Buffer Tracking (-A4)

Vio	deo/SID	
	Audio buffer	

This item displays the status of the audio tracking buffer. It can be one of these states:

- Emptying (-1%)
- Emptying (-30 ppm)
- locked
- Filling (30 ppm)
- Filling (1%)

1% filling or emptying will have a slight pitch change that is near the edge of human perception for normal audio program material. This mode will be engaged when a large amount of delay needs to be changed quickly (video frame drops/repeats).

30ppm filling or emptying will be used to make minor delay buffer changes.

"Locked" will indicate that the video and audio buffers match.

The delay of the audio through the audio buffer always tracks the video except when the video frame synchronizer drops or repeats frames of video or the user supplies a different phase of input video. Unfortunately, at these boundary conditions, we cannot simply drop or repeat sections of audio. A rate conversion process is used to fill or empty the buffer to the needed level. The process must be spread out over a period of time so that the action is not audible.

This indicator is mainly used at the Evertz factory and may also be useful to monitor to help in debugging system issues.

7.5.17. Setting the VITC Line Number – 525 Line Video

Vic	deo/S	SID
	525	5 VITC line
		10 to 32
		<u>10</u>

With this control, set the VBI line number that contains the VITC information when operating in NTSC video mode.

If the VITC contains Source ID (SID) information, the card will automatically decode it, and turn on the SID window if the user has enabled this window.

If the wrong line number is set, no time code (or SID) will be decoded.

7.5.18. Setting the VITC Line Number – 625 Line Video

Video/SID	
625	5 VITC line
	6 to 32
	<u>10</u>

With this control, set the VBI line number that contains the VITC information when operating in PAL-B video mode.

If the VITC contains Source ID (SID) information, the card will automatically decode it, and turn on the SID window if the user has enabled this feature.

If the wrong line number is set, no time code (or SID) will be decoded.

7.5.19. Setting the PESA Source ID Line Number – 525 Line Video

Video/SID	
525	5 PESA line
	10 to 21
	<u>11</u>

With this control, set the VBI line number that contains the PESA SID information when operating in NTSC video mode. If the wrong line number is set, no SID will be decoded.

7.5.20. Setting the PESA Source ID Line Number – 625 Line Video

Video/SID	
625	5 PESA line
	7 to 22
	<u>11</u>

With this control, set the VBI line number that contains the PESA SID information when operating in PAL-B video mode. If the wrong line number is set, no SID will be decoded.

7.5.21. Setting the Default SID Mode

Vide	eo/SID
	Default SID
	mode
	<u>Disable</u>
	Enable

Determines if the Default SID message will be displayed in the SID window when there is no incoming source ID on the VITC.

Set to *Disable* to blank the SID window when there is no incoming source ID.

Set to *Enable* to show the Default SID message in the SID window when there is no incoming source ID. The SID window must also be turned On to display the default SID message. See section 7.9.3 for information on turning the SID window On.

7.5.22. Setting the Message to be Displayed When There Is No Incoming SID

Vic	Video/SID		
	Default SID		
	msg		
	<u>No SID</u>		

This control sets the message that will be displayed in the SID window when there is no incoming source ID on the VITC. The text of the message can be changed. See section 7.2 for information on changing text fields.

7.6. CONFIGURING THE VIDEO PROCESSING CONTROLS

The *Video Processing* menu is used to configure parameters associated with the composite encoder video processing. The chart below shows the items available in the *Video Processing* menu.

VBI Proc	Selecting this item takes you into the VBI Processing Menu
NTSC setup pedestal	Selects whether the NTSC 7.5 IRE pedestal will be added to the composite analog output video
Line 21 setup	Controls line 21 processing
Colour Bars	Turn on internally generated colour bar test signal
Composite display	Selection of colour or B/W modes
Video level	Controls the output video level
Hue	Controls the output video hue
Saturation	Controls the output video saturation
Contrast	Controls the output video white level
Brightness	Controls the output video black level
H blanking	Controls the width of horizontal blanking
VBI processing	Either pass or blank the vertical blanking interval lines
Y Filter Selection	Standard composite filtering or adjustable filtering is selectable
Wideband Y Freq. Resp.	Controls the frequency response with the wideband filter selected
Chroma Filter Selection	Various chroma bandwidths are available with this control

7.6.1. Adding the NTSC Setup Pedestal

Vic	deo/S	SID	
	Vid	eo Pr	ocessing
		NTS	C setup
		pede	estal
			Off
			<u>On</u>

7.6.2. Line 21 Processing

Video/SID	Closed captioning has been
Video Processing	but it is placed on the first a
Line 21 setup	pedestal. The upstream clo
<u>Off,</u>	generated a setup pedesta
On,	properly keyed captioning, a
Blank	
	This control, when set to O
	line 21. This is the default sta
	Vynen set to <i>On</i> , the 7.5 IR
	Use this state when there are
	Note: The On condition w
	Pedestal control is set to On
	Blank is used to remove cap
	If you need independent field
	this control to Off and then
	Menu.
	Note: The captions are Bla
	only. This will allow the m
	monitoring output even whe
	I downetroom on the program

7.6.3. Colour Bars

Composite NTSC analog video may have a 7.5 IRE pedestal while 4:2:2 SDI video does not. This control, when set to On, will add the pedestal and re-scale the video accordingly. The setup pedestal should not be present on composite video when operating in Japan.

defined to NOT have a 7.5 IRE pedestal, active line of video where there may be a sed captioning encoder should not have I. When encoding composite video with pedestal must not be generated.

ff, will not create the 7.5 IRE pedestal on ate for properly generated captioning.

RE pedestal will be generated on line 21. e no input captions.

ill only take effect if the NTSC Setup

tioning from line 21.

d 1 and field 2 on/off control of setup, set use the controls in the VBI Processing

inked from the main, high quality, output onitoring of upstream captioning on the n it is not desirable to have them passed | downstream on the program video.

Internally generated colour bars may be turned on to aid in monitor calibration. To make sure that this control is not left on accidentally, this parameter is not included in the preset management.

Warning: You cannot change the output phasing when the colour bars are turned on. Be careful when adjusting genlock references when this is turned on.

7.6.4. Setting the Composite Display Mode – Colour or Monochrome

turned off with this control.

7.6.5. Video Level

This control allows the user to adjust the output level of the analog video (including sync). When set to 0, the nominal output video level will be 140 IRE.

If monochrome operation is desired on the composite output, colour may be

Warning: The brightness and contrast controls will also affect video level. Set this control by measuring sync level rather than video level. After calibrating the brightness and contrast, come back to this control and verify the video level.

7.6.6. Setting the Hue

This control allows the user to adjust the Hue of the analog video in steps of 0.175 degrees.

7.6.7. Setting the Saturation

This control allows the user to adjust the saturation level of the analog video.

7.6.8. Setting the Contrast

This control allows the user to adjust the contrast (white level) of the analog video. There is a +/-10% range on this control.

7.6.9. Setting the Brightness

This control allows the user to adjust the brightness (black level) of the analog video. There is a +/- 15 IRE range on this control.

7.6.10. H Blanking

7.6.11. VBI Blanking

Vic	deo/S	SID	
	Vid	eo Pr	ocessing
		VBI	Blanking
			Blank,
			<u>Pass</u>

7.6.12. Y Filter Selection

The Vertical Blanking Interval may be passed to the component outputs or may be blanked (removed) to not interfere with display of the image.

When set to Narrow, the H blanking will be 10.7µsec wide. When set

to Wide, the H blanking will be 11.2µsec.

The Y channel may be filtered with a standard composite filter or may be wideband. When *Wide bandwidth* is selected, the following control allows the frequency response to be adjusted.

7.6.13. Wideband Y Frequency Response

Video/SID Video Processing Wideband Y Freq. Resp. -6 to 6 <u>0</u>

When the above parameter is set to *Wide bandwidth*, this controls a set of high frequency response curves with +/- 4dB range.

Note: If you want to observe the filtering, supply a component multiburst or H sweep test signal.

7.6.14. Chroma Filter Selection

Video/S	SID
Vide	eo Processing
	Chroma Filter
	Selection
	650kHz,
	1.0Mhz,
	<u>1.3MHz,</u>
	2.0MHz,
	3.0MHz

The Cb and Cr channels may be filtered with any of these bandwidths.

Note: If you want to observe the filtering, supply a component multiburst or H sweep test signal.

7.7. CONFIGURING THE VBI

The *VBI Proc* menu is used to configure the Vertical Blanking Interval (VBI) lines 11 through 22. Both fields have independent controls. The chart below shows the items available in the *Video Processing* menu. For simplicity only a few menus will be shown.

Field 1Selecting this item takes you into the Field 1 VBI Processing Menu.Field 2Selecting this item takes you into the Field 2 VBI Processing Menu.

Once you have selected the desired field, there are line-by-line processing controls:

Line 11	Controls line 11 processing
Line 22	 Controls line 12 processing

For simplicity only the menu for line 10, field 1 will be shown in the manual.

7.7.1. Line Processing

Video/SID Video Processing VBI Proc Field 1	SDI video does NOT have a 7.5IRE pedestal. In NTSC, the VBI lines may or may not have a 7.5 IRE pedestal, depending on the signal present on that line. This control allows you to apply setup on the line, if needed.
Line 10 <u>Setup Off.</u> Setup On,	This control, when set to <i>Setup Off</i> , will not create the 7.5 IRE pedestal on the selected line. This is the default state.
	Note: There is a very inconsistent application/removal of setup pedestals, in the VBI, in the industry. Composite video decoders may or may not properly remove setup pedestals from VBI lines and sometimes, two setup pedestals are applied to the same line! Also, setup pedestals may be removed from lines that do not have setup applied, creating a blacker than black signal.
	Note: Line 21 setup control (both fields) is also shared with the <i>Line 21 Processing</i> control in the parent menu. To turn line 21 setup off, both this control and the <i>Line 21 Processing</i> control must be set to <i>Off</i> .
	This processing has been carried through to line 22 to address lines that are used for carrying data in the active video.

7.8. CONFIGURING THE BAR GRAPH CONTROLS

The *Bar Graphs* menu items deal with the configuration and operation of the audio bar graphs; modes, ballistics, display properties, etc. The chart below shows the items available in the *Bar Graphs* menu. Sections 7.8.1 to 7.8.15 give detailed information about each configuration item for the audio bar graphs. Sections 7.8.1 to 7.8.3 show the items in the bar graphs 1 and 2 menu tree. These sections apply also to the items in the bar graph 3 and 4 menu tree. Sections 7.8.13 to 7.8.15 apply globally to all bar graphs.

Bar graphs 1 and 2	Setup items for bar graphs 1 and 2
Bar graphs 3 and 4	Setup items for bar graphs 3 and 4
Size	Sets bar graph size
Background opacity	Sets the background opacity or how much video picture content will be visible through the bar graph backgrounds.
Bars opacity	Sets the background opacity or how much video picture content will be visible through the bar graph bars.

When many windows are turned on, the on-screen information can get very crowded. The bar graphs and text windows are layered to keep the most important information from being covered by other not-so important windows. The priority is as follows:

Priority Level	Display Type
1 (top)	Fault Messages
2	Time Code Source ID Program Rating
3	Status window
4	Phase bar graphs
5 (bottom)	Level bar graphs

7.8.1. Selecting the Bar Graph Operating Mode

Bar	raphs	
l	ar graphs 1 and 2	
	Bar mode	
	Normal,	
	Sum + diff	F

In Normal mode, stereo bar graphs are displayed.

In Sum + diff mode, bar graph 1 is the absolute value of the sum of both channels and bar graph 2 displays the absolute value of the magnitude of the difference of the two signals.

7.8.2. Setting the Headroom

Bar gra	phs
Bai	graphs 1 and 2
	Headroom
	0 to 30db
	<u>0db</u>

The *headroom* is the level difference between a maximum amplitude signal that can be represented in the digital world (this is called 0 dB FS or 0 dB Full Scale) to a nominal, user defined operating level, represented in Decibels. In modern digital studios and broadcast stations this is on the order of 20 dB.

This control is used to position the 0 dB point for the VU and PPM meters (excluding AES/EBU ballistics mode that always uses 0 dB FS). For example, if you set this control to 15dB and input a signal that is –15 dB FS, then the bar graph top will be at 0dB. If you are in PPM mode with AES/EBU ballistics, then the meter will read – 15dB. When you adjust this level, you are changing the 0dBr or program reference point on the bar graphs.

After you set the headroom and select the bar type/mode, you can adjust the bar graph coloured area sizes with the *Error region* and *Warning region* controls.

7.8.3. Setting the Bar Graph Type

Bar graphs	
Bar grap	hs 1 and 2
Bar	type
	PPM
	PPM peak
	VU
	VU peak
	<u>VU PPM</u>

This control sets the bar graph to one of five basic types. The ballistics and display characteristics of the bar graphs are configured with other items in this section of the menu structure

PPM:

Peak Program Meter tracks the peaks of the audio content rather than the perceived loudness or the power content of the material.

PPM with peak hold: (PPM peak)

The peak hold feature allows the user to keep track of the audio peak. A floating mark is pushed up by audio peaks and is reset with menu command (see the "Clear Faults" menu).

VU:

Volume Unit meter follows, approximately, the perceived loudness of human hearing.

VU with peak hold: (VU peak)

The peak hold feature allows the user to keep track of the peak VU reading. A floating mark is pushed up by audio VU peaks and is reset with a menu command (see the "Clear Faults" menu).

VU with floating PPM: (VU PPM)

This mode displays both VU levels and PPM levels on the same bar graph. The VU level is indicated by the solid bar going up and down, while the PPM reading is indicated by a floating white bar. The scale displayed is a decibel scale with 0 corresponding to program reference level (for all modes except AES/EBU).

7.8.4. Setting the PPM Mode and Ballistics

Ba	r graphs
	Bar graphs 1 and 2
	PPM mode
	DIN,
	BBC,
	Nordic N9,
	<u>AES/EBU</u>

This parameter selects one of four industry standard of Peak Program Meter (PPM) display modes.

When one of these modes is selected, a number of items are set to adhere with predefined industry standards. The items affected include; meter attack time, meter decay time, min level displayed, max level displayed, analog reference (100%) level and, in some instances, region colouring and phase graph representation. Table 7-1 illustrates the values set by the standards.

Mode	Attack	Decay	Ref.	Min	Max	Peak	Notes
	Time	Time	Level	Level	Level	Output	
						Level	
DIN 45 406	10 ms	1.5 sec	6 dBu	-50 dB	5 dB	6 +	1 dB per div until –10 dB,
		for				headroom	logarithmic to bottom -50dB.
(IRT Rec. 3/6)		20 dB					Associated DIN phase
							correlation scale:
							 both the same => 1 r,
							 only 1 signal => 0 r,
							 both out of phase => -1r.
BBC "IEC 128-10,	10 ms	2.8 sec	8 dBu	1	7	8 +	# 6 on the scale is the
type IIa, fast mode		for 7 to 1		-12 dB	+12 dB	headroom	reference level
Nordic N9	5 ms	1.7 sec	6 dBu	-42 dB	+12 dB	6 +	
		for				headroom	
		20 dB					
AES/ EBU	1	1.5 sec	User	-60 dB	0 dB	User	100% reading is user
	sample	for	defined			defined	definable.
	period	20 dB					0 dB corresponds to 0 dB
							FS.

Table 7-1: PPM Bar Graph Characteristics

Please Note: The phase correlation scale on the DIN type is different from our other phase indicators (*Sum* + *Diff* and phase bar graphs).

7.8.5. Setting the VU Display Range

Normal

Extended

Bar graphs Bar graphs 1 and 2 VU range

This parameter selects the VU display range when VU modes are active.

Most VU meters have two possible ranges. These are:

Normal range: +3 to -20dB Extended range: +3 to -57dB

The bar graphs will be re-scaled to represent the selected range.

When using VU and BBC PPM mode, the VU scale is truncated to –6dB to match the scaling of BBC mode.

7.8.6. Setting the Phase Bar Graph Type

There are two types of phase bar graphs available: one that has a focus of presenting the amount and L/R distribution of stereo content (STEREO), and one that presents in-phase/out-of-phase proportions (DIN).

7.8.7. Setting the Bar Graph Error Region

The bar graph "error" region is the area from clipping (0 dB FS) down to the level selected by this control. It is intended to tell the user when the audio signal is getting close to clipping.

Warning:

Some bar graph types (and ballistics) have this region defined. When you select one of these types, this value will automatically be set. After you choose the type, you can adjust this value to your desired level.

7.8.8. Setting the Bar Graph Warning Region

Bar gra	phs
Bar	graphs 1 and 2
	Warning region
	-2 to -40 dB
	FS
	<u>-20 dB FS</u>

The bar graph "warning" region is the area between the "OK" region and the "error" region. It is intended to indicate when the audio level is approaching the "error" region. This control sets the bottom of the "warning" region. Normally, it is set to the audio program level. The upper boundary of this region is always set with the "error" region control.

This value cannot be higher than the "error" region value. If the "error" region is lowered below the value of this parameter, the "warning" region will also be lowered.

Warning:

Some bar graph types (and ballistics) have this region defined. When you select one of these types, this value will automatically be set. After you choose the type, you can adjust this value to your desired level.

7.8.9. Setting the Level Bar Graph Scale Position

Ba	r gra	phs		
	Bar graphs 1 and 2			
		Scale position		
		Off		
		Left		
		<u>Right</u>		

This control allows you to enable and position the level bar graph scale tick marks and the scale labels with respect to the bar itself. When off, there will not be any ticks or numerical labels while left or right will position them to the left or the right of the graphs respectively.

If a combination VU/PPM mode is selected, then "left" will select VU scale on the left, PPM scale on the right and "right" will select VU scale on the right and PPM scale on the left.

7.8.10. Setting the Phase Bar Graph Scale Position

Ba	r gra	iphs	
	Bar	r graphs 1 and 2	
		Phase scale	
		Тор	
		Bottom	
		None	

This control allows you to enable and position the phase bar graph scale tick marks and the scale labels with respect to the bar itself. When off, there will not be any ticks or numerical labels while top or bottom will position them to the top or the bottom of the phase bar graph respectively.

7.8.11. Setting the Window and Bar Graph Positions

Ba	r graphs	
	Bar graphs 1 and 2	
	Window position	

This control allows you to change the window positions of all windows and bar graphs. The window positions can also be set from the *Window position* menu item on the *On-screen display configuration menu*. See section 7.9.2 for detailed information on positioning the windows and bar graphs.

7.8.12. Setting the Colours of the Bar Graphs

Each of the level bar graphs consists of three regions: the OK, warning and error regions. The *Colours* menu items allow you to select one of a group of standard colours, or choose your own custom colours for each of the regions. The controls for each region operate the same way so for simplicity only the controls for the OK region will be shown in the manual.

Tip: The colours of the various regions are defined by three 8 bit R, G, B values very similar to the values used in most paint programs like Microsoft Paint. When you choose one of the predefined colours, the card automatically sets the R, G, and B values. If you choose the custom colour, you will be able to set the R, G, and B values independently to give you the desired colour. If you are having problems setting these values with the menu system, open a paint program, select the colour you like (usually from a colour wheel) and set the R, G, and B values into the card using the respective *Custom colour* menu items for the region.

7.8.12.1. Setting the Level Bar Graph Region Colour

This control sets the colour of the bottom, "OK", region of level bar graphs. You can choose from one of the predefined colours or define a custom colour.

7.8.12.1.1. Selecting a Bar Graph Region Custom Colour

There are three menu items used to set the custom colour. The menu item for each colour component works in the same way; for simplicity, only the menu item for the *Red* component will be shown in the manual.

Bar graphs	
Bar grap	hs 1 and 2
Colc	ours
	Custom ok red:
	0 to 255

This control defines one of the component colours for a custom colour for one of the regions of level bar graphs.

When the menu item is selected you are shown a screen which shows all three colour components, with an arrow (<) to the right of the colour component you will be adjusting. In addition you are shown two boxes on the screen, which show you the current custom colour value to aid you in selecting the desired colour. The box on the left side of the screen shows the colour with the bar graph background opacity value applied, while the box on the right shows the colour with the bar graph bar opacity value applied.

7.8.13. Setting The Level Bar Graph Size

Bar gra	phs
Siz	e
	Small,
	<u>Big</u>

This control sets the vertical size of the level bar graphs.

Two sizes of bar graphs are available. The *Big* size is about $\frac{3}{4}$ of the screen height while the *Small* size is about $\frac{1}{2}$ of the screen height.

7.8.14. Setting the Transparency (Opacity) of Bar Graph Background

Ba	r gra	phs
	Bac	ckground
	ора	acity
		0 to 64,
		<u>32</u>

This control sets the bar graph background opacity or how much video picture content will be visible through the bar graph backgrounds.

When set to the minimum value, very little of the bar graph background colour will be visible over the video content. At the maximum value, very little of the background video will be visible through the bar graph.

7.8.15. Setting the Transparency (Opacity) of the Bar Graph Bars

Bar gra	phs
Bar	rs opacity
	0 to 64,
	<u>64</u>

This control sets the bar graph foreground opacity or how much video picture content will be visible through the bar graph backgrounds.

When set to the minimum value, very little of the bar graph colour will be visible over the video content. At the maximum value, very little of the background video will be visible through the bar graph.

7.9. CONFIGURING THE ON-SCREEN DISPLAY CONTROLS

The On-screen display configuration menu items is used to configure the position and display characteristics of the text windows. It is also used to program the on/off states of the text and bar graph windows. The chart below shows the items available in the On-screen display configuration menu. The following sections give detailed information about each of the menu items.

Window position	Controls used to position each one of the On Screen windows.
Window enable	Controls used to configure the on/off states of the text and bar graph windows.
Text windows	Controls used to set the text style, background colour and opacity for the On screen windows.

When many windows are turned on, the on-screen information can get very crowded. The bar graphs and text windows are layered to keep the most important information from being covered by other not-so important windows. The priority is as follows:

Priority	Display Type
Level	
1	Fault Messages
(top)	
2	Time Code
	Source ID
	Program Rating
	XDS
3	Status window
4	Phase bar graphs
5	Level bar graphs
(bottom)	

7.9.1. Descriptions of the On-Screen Windows

The following sections describe the different windows, what is displayed in them and various aspects of their purpose.

7.9.1.1. Video/Audio Status

The purpose of the Video/Audio status screen is to show as much status information about the video and audio as possible in a small, concise table. Table 7-2 shows each item that may appear in the status screen. The Status window may be operated on one of two modes. In *normal* mode, all lines are controlled by the text window attributes. In *Fault* mode, those lines whose associated fault triggers are used to activate a CEM fault, will be displayed using fault window properties. All other lines use the text window properties. If the Status window is enabled by a CEM fault, only those lines associated with the fault triggers that enable the fault window will be displayed using fault window properties. All other lines use text window properties.

ltem	Value(s)	Description
Video	525/625/not present/	Input video standard detected. If the card is a
	525 (wrong std)/625 (wrong std)	different standard than what is on the input,
		(wrong std) will be displayed.
Picture	Moving/frozen/frozen, black	Shows the status of the picture content. Shows
Content		moving if the picture is active, frozen if the card
		detects no motion, or frozen, black if the picture
		is black
Genlock	present/not present/off	Genlock presence detected. If genlock is turned
		on and video of the correct standard is applied,
		present will be displayed. If a genlock source of
		off is selected, off will be displayed.
VITC	TC Value/not present	If present, the time code value is displayed here.
VITC SID	SID value/not present	If present, the VITC SID is displayed here.
PESA SID	SID value/not present	If present, the PESA SID is displayed here.
PR	Value/not present	The program rating of Closed Captioning is
		indicated, if present.
CC	Present/not present	The presence/absence of Closed Captioning is
		indicated.
Ch. 1 and 2	Not present/[(silent/over), (mono/out	Status information about channels 1 and 2 are
	of phase)]	shown here.
Ch. 3 and 4	Not present/[(silent/over), (mono/out	Status information about channels 3 and 4 are
	of phase)]	shown here.

Table 7-2: Video/Audio Status Screen Items

7.9.1.2. Audio Bar Graphs

Audio level (peak and/or average) and phase information can be displayed in a number of different forms. See section 7.8 for information on configuring the bar graphs. The source is selectable between the embedded audio (all versions of hardware) and the external AES audio (–A4 version).

On the 7736CEM-A4, the audio level/phase information is displayed after the source selection, routing but before the output gain control (gain is controlled in the D to A conversion).

7.9.1.3. VITC Time Code Window

The VITC time code window shows the vertical interval time code present at the input to the CEM module. Use the VITC line select items on the Video menu to configure the lines that the CEM will use for reading VITC. (See sections 7.5.17 and 7.5.18 for information about setting the VITC line numbers.)

Warning: Because the video goes through a frame synchronizer, the time code displayed will not necessarily be the correct time code number for that particular frame of video. However, it will not be more than one frame in error.

The *TC window size* menu item controls whether the time code window will be displayed in the normal or large font size.

7.9.1.4. Program Rating Window

The Program rating window shows data decoded from the Line 21 XDS Program rating packet. This information is usually encoded by the user to control the operation of V-Chip decoders in the viewer's receiver. The *PR window size* menu item controls whether the time code window will be displayed in the normal or large font size.

7.9.1.5. CC Window

The CC window is only available on CEM models that have an analog monitoring video output. It contains caption information from the CC1 data stream.

7.9.1.6. XDS Window

The XDS window contains 2 lines with the following information: network name, call letters, program name, time of day. Only the information found in the XDS stream will be displayed. An item is considered to be missing if it does not appear in the XDS stream for 15 seconds. There is no ability to trigger faults on the absence of XDS.

7.9.1.7. Source Identification Window

The CEM module has the ability to decode source identification (SID) information from the vertical interval time code present at the input to the module. When no VITC SID is encoded on the input, the CEM module will decode SID that has been encoded in the PESA format if it is present. The Source Identification window is used to display the decoded SID information. When there is neither VITC SID or PESA SID encoded, on the input video, the *Default SID message* will be displayed if *Default SID mode* is enabled, otherwise the SID window will be turned off. See sections 7.5.21 and 7.5.22 for information about setting the *Default SID message*. Use the VITC line select items on the Video menu to configure the lines that the CEM will use for reading VITC. See sections 7.5.17 and 7.5.18 for information about setting the VITC line numbers. Use the PESA line select items on the Video menu to configure the lines that the CEM will use for reading PESA format source ID. See sections 7.5.19 and 7.5.20 for information about setting the VITC line numbers. The *SID window size* menu item controls whether the time code window will be displayed in the normal or large font size.

7.9.1.8. Fault Message Windows

The Fault 1 and Fault 2 window show user text messages when the Fault 1 or Fault 2 conditions are triggered. The Fault message windows have their own set of colour, opacity and size attributes, they can be set to come on steady or blinking and they contain fully programmable messages. See section 7.11 for more information on setting up the fault conditions and configuring the fault windows.

7.9.2. Setting the Position of On Screen Windows

To set the horizontal and vertical position of the Bar Graphs, Status, VITC, Program Rating, SID, or one of the Fault windows use the *WINDOW H* and *WINDOW V* menu items for the respective window. The controls for all of the windows work in the same way so, for simplicity only the menu items for the *STATUS WINDOW* will be shown.

7.9.2.1. Setting the Horizontal Position of On Screen Windows

The *Window H* position menu item sets the leftmost character position for the respective window.

When you select this parameter, the screen text will disappear and a box of the correct size will appear. Move it around to the desired position with the toggle switch. Press the pushbutton when done.

7.9.2.2. Setting the Vertical Position of On Screen Windows

The *Window V* position menu item sets the top row for the respective window.

When you select this parameter, the screen text will disappear and a box of the correct size will appear. Move it around to the desired position with the toggle switch. Press the pushbutton when done.

7.9.3. Selecting What Bar Graphs And Windows To Display

The windows and bar graphs can be turned permanently on or off. The *Window enable* menu item is used to program the on/off states of the text and bar graph windows. To display the Fault windows use the *Fault condition* menu item on the *Fault definitions* menu. (See section 7.11.1.4)

When you select the *Window enable* menu item you are presented with a list of the possible on/off states as shown in Table 7-3. Select the desired function using the toggle switch. When the pushbutton is pressed, the cell cycles through the valid values for the field. Each of the windows and bar graph displays can be set to *On* or *Off*. When set to *On*, the corresponding window or bar graph is always displayed. When set to *Off*, the window or bar graph is always off.

Item	State	Fault 1	Fault 2
Ch ½ level bars			
Ch ¾ level bars			
Ch ½ phase bars			
Ch ¾ phase bars			
Status			
Time code			
Program Rating			
CC			
XDS			
SID			

Table 7-3: Methods of Turning Windows and Bar Graphs On and Off

7.9.4. Setting the Text Window Attributes

The On screen text windows can be displayed as white characters with or without a coloured background. In addition the text and background opacity or how much video picture content will be visible through the text or background is adjustable. The *Text window config* menu items are used to set these parameters for all the text windows except the Fault windows. See section 7.9.5 for information on setting the *Fault window* attributes.

7.9.4.1. Turning on the Text Window Backgrounds

The text displayed in the Text windows may either have a background box or if too much video information is hidden, it may be inserted with a thin black outline.

7.9.4.2. Setting the Text Window Background Colours

Select the desired background colour around the text in the Text windows.

7.9.4.3. Setting the Text Window Background Opacity

This control sets the Text window background opacity or how much video picture content will be visible through the window background.

When set to the minimum value, very little of the window background colour will be visible over the video content. At the maximum value, very little of the background video will be visible through the window background.

7.9.4.4. Setting the Text Window Text Opacity

On-screen display configuration

 Text windows

 Text window config

 Text opacity

 0 to 64

 64

This control sets the Text window text opacity or how much video picture content will be visible through the text characters.

When set to the minimum value, very little of the white window text will be visible over the video content. At the maximum value, very little of the background video will be visible through the white window text.

7.9.4.5. Setting the Time Code Window Font Size

Or	n-scr	een d	display configuration
	Тех	kt win	ndows
		Tex	t window config
			TC window size

<u>Normal</u> Big This control sets the font size of the VITC time code window.

When it is set to *Big* the font size will be double the height and width of the *Normal* font size.

7.9.4.6. Setting the Program Rating Window Font Size

Or	n-scr	een a	display configuration
	Тех	kt win	ndows
		Tex	kt window config
			PR window size
		_	<u>Normal</u>
			Big

This control sets the font size of the program rating window.

When it is set to *Big* the font size will be double the height and width of the *Normal* font size.

7.9.4.7. Setting the Source ID Window Font Size

On-screen display configuration	This control sets the font size of the source ID window.
Text windows	
Text window config	When it is set to <i>Big</i> , the font size will be double the height and
SID window size	width of the Normal font size.
Normal	
Big	

7.9.4.8. Setting the Status Window Mode

On-screen display configuration	This control determines the display properties of the status
Text windows	window.
Text window config	
Status window mode	When it is set to <i>Normal</i> the status window will use the text window properties.
Fault	When it is set to <i>Fault</i> , items in the status window that have been selected for fault generation using the <i>Fault Trigger</i> menu item will use the <i>Fault window</i> properties when the fault is active. If the status window is enabled by either Fault 1 or Fault 2 triggering, then only the faults that actually enabled the window will be shown in the <i>Fault window</i> properties. The rest of the items on the status window will be shown in the <i>status</i> window will be shown in the <i>Fault window</i> properties.
	For example, if "program rating" is set up as a fault trigger, and the rating disappears, then the "program rating" line of text on the status screen will take up the characteristics of the "fault text". Usually this is white text on a red background.

7.9.5. Setting the Fault Window Attributes

The On screen Fault windows can be displayed as white characters with or without a coloured background. In addition the text and background opacity or how much video picture content will be visible through the text or background is adjustable. The *Fault window config* menu items are used to set these parameters for the Fault windows.

7.9.5.1. Turning on the Fault Window Backgrounds

On-screen display configuration
Text windows
Fault window config
Text type
White on bkgrn
White with no
bkgrnd

The text displayed in the fault window may either have a background box or if too much video information is hidden, it may be inserted with a thin black outline.

7.9.5.2. Setting the Fault Window Background Colours

Or	n-scr	een d	display configuration
	Tex	kt wir	ndows
		Fau	ult window config
			Background colour
			Black
			Grey
			Yellow
			<u>Red</u>
			Green

Select the desired background colour around the text in the fault windows.

7.9.5.3. Setting the Fault Window Background Opacity

Or	n-scr	een (display configuration
	Тех	kt wir	ndows
		Fau	ult window config
			Background opacity
			0 to 64
			<u>64</u>

This control sets the Fault window background opacity or how much video picture content will be visible through the window background.

When set to the minimum value, very little of the window background colour will be visible over the video content. At the maximum value, very little of the background video will be visible through the window background.

7.9.5.4. Setting the Fault Window Text Opacity

Text windows Fault window config
Fault window config
i alant inna e in g
Text opacity
0 to 64
<u>64</u>

This control sets the Fault window text opacity or how much video picture content will be visible through the text characters.

When set to the minimum value, very little of the white window text will be visible over the video content. At the maximum value, very little of the background video will be visible through the white window text.

7.9.5.5. Setting the Fault Window Font Size

Similar window size menu items are available for the Fault 1 and Fault 2 windows.

This control sets the font size of the program rating window.

When it is set to *Big* the font size will be double the height and width of the *Normal* font size.

7.9.5.6. Setting the Blink Mode of the Fault Windows

Similar blink mode menu items are available for the Fault 1 and Fault 2 windows.

Or	n-scr	een d	displa	ay configuration
	Tex	kt wir	ndow	S
		Faι	ılt wi	ndow config
			Faι	ılt 1 blink
				<u>Disable</u>
				Enable

This control determines if the Fault 1 window will blink or be on solid when the fault is active.

When it is set to *Disable* the fault window will be on steady when it is active.

When it is set to *Enable* the fault window will blink when it is active.

7.10. GPO CONFIGURATION

The 7700 frame has a fault monitoring LED and general-purpose output. The user has the ability to configure which faults the module will assert onto the frame status system. The *GPO configuration* menu contains the controls used to configure the GPO. Section 7.10.1 gives detailed information about the menu item.

Frame stat trigger

Controls what events will trigger the Frame Status Fault line and the Fault Status LED.

7.10.1. Frame Status Fault Trigger Condition

GF	20 CC	onfiguration
	Fra	me status
	trig	ger
		None
		Fault 1
		Fault 2
		Fault 1 or 2

The 7700 frame has a global status line that any card can pull active. With this control, you can select the condition for the card to cause the line to go active. Also included on the frame status signal is card power supply monitoring. This is derived with hardware and cannot be disabled from the status signal.

If it is desired to use this feature, the frame status jumper J3 (located near the card extractor) must also be set to the *On* position. See section 9.2

The Red *Local Fault* LED will be On when the global status line is active regardless of the position of jumper J3.

7.11. FAULT DEFINITIONS

When many windows are turned on, the on-screen information can get very crowded. The bar graphs and text windows are layered to keep the most important information from being covered by other not-so important windows. The Fault windows have the highest priority. The priority of the other windows is shown in section 7.9.

The *Fault definition* menu items are used to configure the fault settings, and the presentation of the fault conditions. The chart below shows the items available in the *Fault definition* menu. Sections 7.11.1 to 7.11.12 give detailed information about each configuration item for the fault definitions.

Fault condition 1	Controls used to configure the Fault Condition 1 display.
Fault condition 2	Controls used to configure the Fault Condition 2 display.
Fault window config	Controls used to set the Fault Window text style, background colour and opacity. These parameters may also be set using the <i>On-screen Display Text window</i> menu.
Video error duration	Sets the duration of missing video beyond which is considered a fault or error condition
Audio error duration	Sets the duration of missing audio (embedded or AES) beyond which is considered a fault or error condition
Over level	Sets the level of audio over which is considered a fault or error condition
Over duration	Sets the duration of audio, over the above level which is considered a fault
Silence level	Sets the level of audio under which is considered silence
Silence duration	Sets the duration of audio in seconds under the above level which is considered a fault
Phase reversal	Sets the level of L/R audio difference over which is considered phase reversal
Phase reversal duration	Sets the duration of audio in seconds over the above phase reversal level which is considered a fault
Mono threshold	Sets the level of L/R audio difference under which is considered mono
Mono duration	Sets the duration of mono audio in seconds which is considered a fault
Loss of CC duration	Sets the duration, of no primary CC1 captions, in seconds which is considered a fault
Loss of PR duration	Sets the duration, of no program rating XDS packet, in seconds which is considered a fault
Picture noise level	Sets the noise level threshold for use in detection frozen pictures
Freeze Duration	Sets the duration, of no picture activity above the <i>Picture noise level</i> , in seconds which is considered a fault
Black Duration	Sets the duration, of no active picture content above 7 IRE, in seconds which is considered a fault

7.11.1. Setting Up How a Fault is Triggered and How it is Presented

The CEM has two fault conditions that can be configured to warn the user of numerous conditions. The *Fault condition 1* and *Fault condition 2* menu items are used to configure when fault 1 or fault 2 are triggered, and how the fault should be presented. The controls for each fault condition operate the same way so, for simplicity, the manual shows only the menu items for *Fault condition 1*.

7.11.1.1. Fault Status

Fa	ult de	efinitions
	Faι	Ilt condition 1
		Fault status

This menu item displays a screen that shows the current status of all faults that can be used to define a fault condition

7.11.1.2. Setting the position of the Fault Windows

Fa	ult d	efinitions	
	Fau	ult condition 1	
		Window position	

This control allows you to change the window positions of all windows and bar graphs. The window positions can also be set from the *Window position* menu item on the *On-screen display configuration menu*.

7.11.1.3. Setting the Message Associated with a Fault

Fault o	lefinitions	
Fa	ult condition 1	
	Fault 1 message	
	Video error	

This control sets the message to display when the fault condition is active. The text of the message can be changed. See section 7.2 for information on changing text fields.

7.11.1.4. Determining If the Fault Message Will Be Displayed

This control sets whether the fault message will be displayed when the fault condition is active.

When enabled, the fault message will be displayed until the condition is reset. When disabled, it will never be displayed. See section 7.11.1.5 for information on setting the duration of the fault condition.

7.11.1.5. Setting the Duration of the Fault Condition

This control sets how long the fault condition will be held. The fault display will be displayed as long as the fault condition is active and the *Fault mode* is set to *Enable*. The fault condition can either be held until the user clears the condition or until a programmable timer expires.

7.11.1.6. Determining What Items Will Generate the Fault Condition

```
Fault definitions
```

```
Fault condition 1
```

This control provides a list of items that may generate a fault condition. Use the toggle switch to travel up and down this list and the pushbutton to enable or disable the item from the fault condition criteria. Enabled items will be shown with a check mark.

A fault condition will exist when any of the selected items occurs.

Input video error	Video absent or wrong standard
Genlock error	Reference absent or wrong standard
Loss of audio ½	Audio 1 and 2 absent
Loss of audio ¾	Audio 3 and 4 absent
Phase reversal ½	Audio 1 and 2 out of phase
Phase reversal ¾	Audio 3 and 4 out of phase
Audio over 1⁄2	Audio 1 or 2 over level
Audio over ¾	Audio 3 or 4 over level
Audio silence ½	Audio 1 and 2 silent
Audio silence ¾	Audio 3 and 4 silent
Audio mono ½	Audio 1 and 2 mono
Audio mono ¾	Audio 3 and 4 mono
Loss of VITC	VITC absent
Loss of SID	SID absent
Loss of program rating	Program rating absent
Loss of CC	Primary CC1 Closed captioning absent
Picture Freeze	No activity above preset noise level in active picture
Picture Black	No active picture above 7 IRE

Table 7-4: Possible Error Conditions to Produce a Fault

7.11.2. Setting the Fault Window Attributes

The Fault windows can be displayed as white characters with or without a coloured background. In addition the text and background opacity or how much video picture content will be visible through the text or background is adjustable. The Fault window config menu items are used to set these parameters for the Fault windows.

Fa	ult definitions
	Fault window config

This control is used to change the fault window colours. These parameters can also be set using the *Fault window config* menu items on the *On screen display* menu. See section 7.9.5 for a complete description of the *Fault window config* menu items.

7.11.3. Setting the Video Error Duration

Fault definitions

-			
	Vid	eo error duration	
		0 to 255 frames	
		0	

This control sets the duration, in number of consecutive frames of video, that video needs to disappear before the *Video error* fault condition exists.

This control is included so that you can have a few frames of missing/bad video before the fault occurs. This is useful to eliminate fault generation when upstream non-synchronous switching occurs.

7.11.4. Setting the Audio Error Duration

Fa	ult de	efinitions
	Auc	lio error duration
		0 to 255 frames
		<u>0</u>

This control sets the duration, in number of consecutive frames of video, that audio needs to disappear before the *Loss of audio* fault conditions exists.

This control is included so that you can have a few frames of missing/bad embedded or external audio before the fault occurs. This is useful to eliminate fault generation when upstream non-synchronous switching occurs.

7.11.5. Detecting Audio Over Level Faults

The Over level and Over duration controls are used to detect when an audio amplitude is close to a dangerous level (i.e. clipping a downstream device, or saturating the digital word length). The Over level control sets the audio level over which there is considered to be a fault. The audio must be over this level for the duration set by the Over duration control before the fault condition exists. A fault will be generated when any channel has generated an over condition.

7.11.5.1. Setting the Audio Over Level

Fa	ult de	efinitions
	Ove	er level
		-30dB to 0dB FS in
		1/4dB increments
		-6dB FS

This control sets the audio level over which there is considered to be over level. This value is expressed in dB full scale (FS) and can even be used to detect digital clipping. If set to 0 dB FS, then if 3 or more consecutive samples (set with the duration control) are at digital saturation (max or min), then the digital word length has been exceeded.

7.11.5.2. Setting the Audio Over Duration

Fault d	efinitions
Ov	er duration
	3 to 255 SAMPLES
	<u>3</u>

This control sets the duration, in number of consecutive samples that are at or above the *Over level* before a fault condition exists.

Note that as longer durations are configured, you are eliminating the detection of higher frequency content over the set *Over level*.

7.11.6. Detecting Audio Silence Faults

The *Silence level* and *Silence duration* controls are used to detect when the audio is considered to be silent. The *Silence level* control sets the audio level under which the audio is considered to be silent. The audio must be under the *Silence level* for the duration set by the *Silence duration* control before the fault condition exists. When the fault condition exists, the audio must be over the *Silence level* for the duration set by the *Silence duration* control before the fault condition will be removed. A fault will be generated when both channels in a pair (1 and 2 or 3 and 4) has satisfied a silence condition.

7.11.6.1. Setting the Audio Silence Level

Fa	Fault definitions				
	Sile	ence level			
		-96dB to –20dB FS			
		<u>-60dB FS</u>			

This control sets the audio level under which it is considered to be silent. This value is expressed in dB full scale (FS)

7.11.6.2. Setting the Audio Silence Duration

Fault definitions			
Sil	ence duration		
0.5 to 127 sec			
	<u>10 sec</u>		

This control sets the amount of time the audio is silent in seconds before a fault occurs.

7.11.7. Detecting Audio Phase Reversal Faults

All stereo audio material has a varying amount of phase difference between the two channels. If there is significant phase reversal for a period of time, then this is a sign that the audio signals may be out of phase.

The *Phase reversal level* and *Phase reversal duration* controls are used to detect when the left and right audio channels are considered to be out of phase. The *Phase reversal level* control sets the amount of phase difference that is considered to be out of phase. The audio must be out of phase by more than the *Phase reversal level* amount for the duration set by the *Phase reversal duration* control before the fault condition exists. When the fault condition is active, the audio must be out of phase by less than the *Phase reversal level* amount for the duration set by the *Phase reversal duration* control before the fault condition will be removed.

7.11.7.1. Setting the Audio Phase Reversal Level

Fault definitions
Phase reversal level

0.5 to 1 in 0.01 increments 0.9 This control sets the amount of phase difference before the audio is considered to be out of phase. This phase reversal is calculated by comparing the difference of the two channels to the average of the two. If a signal is always out of phase, then the difference between the two will be high compared to the average of the two. This corresponds to 1 in this control.

If there is only content on one of the channels (i.e. left only or right only), then the difference is equivalent to the average of the two channels. This corresponds to 0.5 in this control.

7.11.7.2. Setting the Audio Phase Reversal Duration

Fa	Fault definitions			
	Phase reversal duration			
	0.5 to 127 sec			
	<u>10 sec</u>			

This control sets the period over which to analyze the audio content for phase reversal.

Note that conditions of silence are not included in this value. This means that if the audio is 50% quiet then it will take twice the period set with this control to detect a phase reversal condition.

7.11.8. Detecting Audio Mono Faults

Mono audio material can take two forms: one channel with information and the other quiet or both channels with the same information. Both types of mono material are considered mono faults.

If there is only a small amount of phase difference between the two channels (perhaps caused by the noise present on the audio) then the content may be mono. If there is no significant difference for a period of time, then this is a sign that the audio signals are mono.

Mono is detected by comparing the difference of the two channels to the average of the two. If a signal always has no out of phase information (or just a small amount) for a period of time, then the signal may be mono.

The Mono threshold level and Mono duration controls are used to detect when two audio channels are considered to be mono. The Mono threshold level control sets the threshold that decides whether the signals are the same. The audio difference must be less than the Mono threshold level amount for the duration set by the Mono duration control before the fault condition exists. When the fault condition exists, the audio difference must be more than the Mono threshold level amount for the duration control before the fault condition exists. When the fault condition set by the Mono duration will be removed.

Material that is both mono and out of phase will be detected as being out of phase and not mono. Once the phase polarity is fixed, then the card will detect mono material.

7.11.8.1. Setting the Audio Mono Threshold Level

Fa	Fault definitions				
	Mono threshold level				
		0.2 to 0.5 in 0.01			
		increments			
		<u>0.2</u>			

This control sets the level of L/R audio difference under which is considered mono

0 corresponds to both channels being identical while 1 corresponds to both channels being exactly out of phase.

7.11.8.2. Setting the Audio Mono Duration

Fault definitions		
Mono duration		
0.5 to 127 sec		
	<u>10 sec</u>	

This control sets the duration of mono audio in seconds, which is considered a fault.

7.11.9. Detecting Loss of Primary Captioning

Fa	Fault definitions					
	Loss of CC duration					
		2 to 512 sec in 2 sec				
		increments				
		<u>180 sec</u>				

This control sets the amount of time in seconds with no primary CC1 captions encoded, which is considered a fault

This fault condition will also be generated if the closed caption signal is missing on the input video.

7.11.10. Detecting Loss of Program Rating Duration

Fa	Fault definitions				
	Los	s of PR duration			
		1 to 255 sec			
		<u>30 sec</u>			

This control sets the amount of time in seconds with no program rating packet encoded in the Line 21 XDS data stream, which is considered a fault

This fault condition will also be generated if the closed caption signal is missing on the input video.

7.11.11. Detecting Picture Freeze

The *Picture noise level* and *Picture freeze duration* controls are used to detect when a video picture is considered to be frozen. The *Picture noise level* control sets the threshold that decides whether activity in the picture is considered to be noise. The picture activity must be greater than this amount for the duration set by the *Picture freeze duration* control before the fault condition exists.

7.11.11.1. Setting the Picture Noise Level

Fault definitions			
	Picture noise level		
		1 to 10	
		<u>7</u>	

This control sets the approximate level of noise expected in the video signal feed. It is used by the freeze detect feature to distinguish motion from background noise on top of a video feed.

For noisy video feeds, higher numbers are needed.

As a guide, the following chart is the approximate picture noise level that starts to be interpreted as motion for each of the *Picture noise level* settings:

Picture Noise	Noise that Starts to be
Level	Interpreted as Motion * (dBrms)
1	-43
2	-42
3	-41
4	-39
5	-38
6	-37
7	-36
8	-34
9	-31
10	-28

* RMS noise relative to 714mV, 15kHz to 4.2Mhz bandwidth, VHF noise added to a static test signal, noise duration set to 30 frames.

7.11.11.2. Setting the Picture Freeze Duration

Fault definitions

Picture freeze duration			
6 to 902 frames			
<u>302 frames</u>			

This control sets duration of video activity under the *Picture noise level* that is considered a fault.

When increasing *Picture noise level*, it is recommended that you increase *Picture freeze duration* as well. This is because higher Picture noise level settings also lower the motion sensitivity, thus long periods without significant on-screen movement are more likely to trigger a "false" freeze alarm.

7.11.11.3. Optimizing the Picture Noise Level and Picture Freeze Duration Parameters

Setting up the optimum *Picture noise level* and *Picture freeze duration* parameters will depend on the amount of noise in the video path from the first equipment with freeze-frame capability to the monitoring point. The system designer should determine the maximum amount of time permissible between the moment of freeze and the alarm.

Setting this time as high as tolerable has two benefits:

- It lowers the frequency of "false" freeze alarms generated when a perfectly valid content contains long motionless periods
- It allows raising the *Picture noise level* parameter, without increasing frequency of "false" freeze alarms.

It is suggested that *Picture noise level* should be set after setting the *Picture freeze duration*.

If the user can place the equipment farthest upstream in the video path to go to a 'freeze frame' mode, then the *Picture noise level* should be optimized by initiating the 'freeze frame' mode in the upstream equipment and adjusting *Picture noise level* as low as possible, without losing the freeze alarm generated by the card. The user should note that because of the random nature of noise, the freeze alarm may be intermittent at some *Picture noise level* settings. The optimal *Picture noise level* setting is obtained when the loss of freeze alarm in the card occurs no more than once every 5 minutes.

If the equipment farthest upstream in the video path cannot go to a 'freeze frame' mode, then *Picture noise level* should be optimized by adjusting it as high as possible. If you trigger false freeze alarms more often than acceptable; lower the *Picture noise level* setting. Since the acceptable rate could be on the order of a day perhaps (depending on the facility), this adjustment procedure may consume a couple of days.

Failing to accomplish optimal adjustment of the *Picture noise level* will result in either:

- A large number of false alarms, or
- Lack of alarm condition when the video is frozen.

The *Picture noise level* and *Picture freeze duration* controls have been designed to be able to detect short-term "digital" freezes such as MPEG or motion JPEG server artifacts. When these devices have a significant problem with the content that they are de-compressing, they will typically start to produce a "blocky" effect. If the problem is severe enough, they will freeze a frame of video and play it out for a number of frames. With the *Picture noise level* set to 1 (i.e. only detect exact, or nearly exact pictures) and the *Picture freeze duration* set to *minimum*, the card can detect these quick "digital freezes". You can't however detect both this type of freeze and a freeze from a link that has added noise to the picture.

7.11.12. Detecting Picture Black Duration

Fault definitions

a					
	Picture black duration				
	4 to 900 frames				
	88 frames				

This control sets duration, in seconds, of active picture content below 7 IRE that is considered a fault.

A Fault is generated when the video level within the active picture area falls below the preset black level (7 IRE) and remains for the specified duration.

7.12. UTILITIES

7.12.1. Accessing Information About this Module and its Firmware

1	Iti	lit	inc
L	וווו	ıu	es

About...

This menu item lists the particulars about this module and the firmware residing within it. It gives quick access to information about revisions that can be used to determine when upgrades are required.

7.12.2. Saving and Recalling Configurations

The module provides two user preset areas to save the complete set of control from the on screen menu. The *Store preset* and *Recall preset* menu items are used to save and recall these configurations.

For simplicity the following sections of the manual show how to store and recall from Preset 1 only.

7.12.2.1. Storing Configurations to the User Presets

- 1	Itil	Itt	65
~	, .,,		-

Sto	re preset 1
	Store
	Cancel

This control is used to initiate a store of the current card configuration into one of the user presets

After selecting the store preset operation, you must change the command to *Store* and press the pushbutton before the store will take place. You can abort the operation by pressing the pushbutton when *Cancel* is displayed.

7.12.2.2. Recall Configurations from the User Presets

Utili	ties	
	Rec	all preset 1
		Recall,
		<u>Cancel</u>

This control is used to initiate a recall of the current card configuration from one of the user presets

After selecting the recall preset operation, you must change the command to *Recall* and press the pushbutton before the store will take place. You can abort the operation by pressing the pushbutton when *Cancel* is displayed.

Warning: there will be a slight disturbance in the operation of the card and the on-screen display while the new preset is being recalled.

Warning: the current state of the card will be forgotten if it has not been saved to a preset before a recall is performed.

7.12.3. Initiating a Software Upgrade

Utilitie	S	
Up	ograde	
	Yes	
	<u>Cancel</u>	

This menu item is used to initiate an upgrade of the module software.

In addition to the software upgrade support detailed in this manual (See the *Upgrading Firmware* section of this manual for more information), you can initiate an upgrade with this command. This will allow you to upgrade the software without unplugging the card and changing the upgrade jumper.

After selecting the upgrade operation, you must change the command to Yes and press the pushbutton before the upgrade can take place. You can abort the operation by pressing the pushbutton when *Cancel* is displayed.

After the upgrade has finished, the unit will automatically restart and run in normal operating mode.

7.12.4. Restoring the CEM to its Factory Default Configuration

Utilities	
Fac	ctory reset
	Yes
	<u>Cancel</u>

This menu item is used to restore all controls back to their factory defaults.

After selecting the reset operation, you must change the command to Yes and press the pushbutton before the command takes place. After the command, all parameters will be set to their factory default. You can abort the operation by pressing the pushbutton when *Cancel* is displayed.

7.13. CLEAR FAULTS AND PEAKS

Clear faults and		
peaks		
	Clear,	
	<u>Cancel</u>	

This menu item on the top level menu provides a convenient method to clear any fault conditions and reset audio peak holds. You can also perform the clear by pressing the toggle switch up or down when not in the menu structure.

8. VISTALINK_® CONFIGURATION

8.1. WHAT IS *VISTA*LINK_®?

*Vista*LINK[®] is Evertz' remote monitoring and configuration platform which operates over an Ethernet network using Simple Network Management Protocol (SNMP). SNMP is a standard computer network protocol that enables different devices sharing the same network to communicate with each other. *Vista*LINK[®] provides centralized alarm management, which monitors, reports, and logs all incoming alarm events and dispatches alerts to all the VLPro Clients connected to the server. Card configuration through *Vista*LINK[®] PRO can be performed on an individual or multi-card basis using simple copy and paste routines, which reduces the time to configure each module separately. Finally, *Vista*LINK[®] enables the user to configure devices in the network from a central station and receive feedback that the configuration has been carried out.

There are 3 components of SNMP:

- 1. An SNMP manager also known as a Network Management System (NMS) is a computer running special software that communicates with the devices in the network. Evertz *Vista*LINK_® Pro Manager graphical user interface (GUI), third party or custom manager software may be used to monitor and control Evertz *Vista*LINK_® enabled fiber optic products.
- 2. Managed devices (such as 7736CEM cards), each with a unique address (OID), communicate with the NMS through an SNMP Agent. Evertz VistaLINK_® enabled 7700 series modules reside in the 3RU 7700FR-C MultiFrame and communicate with the manager via the 7700FC VistaLINK_® frame controller module, which serves as the Agent.
- 3. A virtual database, known as the Management Information Base (MIB), lists all the variables being monitored and which both the Manager and Agent understand. Please contact Evertz for further information about obtaining a copy of the MIB for interfacing to a third party Manager/NMS.

For more information on connecting and configuring the *Vista*LINK® network, see the 7700FC Frame Controller chapter.

8.2. AUDIO SETTINGS

🎟 192.168.12.3, 7736C	EM [2]: Configuration					- • •	X
Refresh 🧶 🧶 1.0 A	pply y Status		Logger 📗				
Fault Traps \ Video Co	ontrols \langle Window Settings \langle General \rangle						
Audio Settings \ Audio	Bar Graph 🚶 Audio Bar Graph Positions	🛚 🔪 Fault Settings	Audio Channels	Fault Conditions	Video and SID	Fault Windo	ws \
Audio Control Audio Source Audio Freeze Mode	Group 1 Pass						
Audio Delay Audio Buffer	Emptying - 1%	25.00 ms					

Figure 8-1: Audio Settings Tab

8.2.1. Audio Source

This parameter enables the user to select the source of audio. It will either be the source group or external AES signals.

In the video-only version (non –A4), this control is present so that you can still monitor the presence/absence of the audio group. However, no audio is processed (there is no audio daughter board) and you will not be able to monitor the levels/phase.

8.2.2. Audio Freeze Mode

This parameter enables the user to select what action to take when video is gone.

Two selectable actions can take place when input video is removed; pass and mute. If it is desirable to maintain audio through the encoder (only valid with AES inputs), then set this control to *pass*. When set to mute, the audio will automatically be muted when video is removed.

8.2.3. Audio Delay

In addition to delaying the audio the same amount that the video is being delayed (in the video frame synchronizer), additional user requested delay may be added or removed with this control.

WARNING: It takes approximately 1 minute, 40 seconds to adjust the audio delay by one second. This is required by the buffer management algorithm when changing the audio buffer size at a 1% rate without muting the audio. This long buffer adjusting will happen on power-up or when a new user supplied value is set with this control. However, the audio is still usable while the buffer is being adjusted. This is good for "On-Air" adjustment of audio delays!

NOTE: Advancing audio can only happen when video is undergoing a delay that is greater than the audio! If the system configured video delay becomes too small, the audio buffer shrinks to its smallest delay and stays at that value.

8.2.4. Audio Buffer

This parameter displays the status of the audio tracking buffer. It can be one of these states:

- Emptying (-1%)
- Emptying (-30 ppm)
- Locked
- Filling (30 ppm)
- Filling (1%)

1% filling or emptying will have a slight pitch change that is near the edge of human perception for normal audio program material. This mode will be engaged when a large amount of delay needs to be changed quickly (video frame drops/repeats).

30ppm filling or emptying will be used to make minor delay buffer changes.

"Locked" will indicate that the video and audio buffers match.

7700 MultiFrame Manual 7736CEM Composite Encoder with Monitoring

The delay of the audio through the audio buffer always tracks the video except when the video frame synchronizer drops or repeats frames of video or the user supplies a different phase of input video. Unfortunately, at these boundary conditions, we cannot simply drop or repeat sections of audio. A rate conversion process is used to fill or empty the buffer to the needed level. The process must be spread out over a period of time so that the action is not audible.

This indicator is mainly used at the Evertz factory and may also be useful to monitor to help in debugging system issues.

8.3. AUDIO BAR GRAPH

🎟 192.168.12.3, 7736CEM [2]: Configuration 🗾 🖾					
Refresh 🦣 🦣 1.0 Apply 🌌 🖉 Status	Logger				
Fault Traps \Video Controls \Window Settings \General \ Audio Settings Audio Bar Graph \Audio Bar Graph Positions \F	ault Settings $ig angle$ Audio Channels $ig angle$ Fault Conditions $ig angle$ Video and SID $ig angle$ Fault Windows $ig angle$				
General Bar Graph Size Big Normal Bars Opacity 50 Background Opacity 50					
Channel Pairs 1 and 2 Audio Level Mode ONormal Sum + Difference Headroom 30 dB FS	Channel Pairs 3 and 4 Audio Level Mode O Normal O Sum + Difference Headroom 30 dB FS				
Level Type PPM PPM Mode DIN	Level Type PPM PPM Mode DIN				
VU Range ONormal (3 to -20) Extended (3 to -57)	VU Range ONormal (3 to -20) Extended (3 to -57)				
Colored Regions Error -1 to 0 dB FS Warning -2 to -1 dB FS OK <-2 dB FS	Colored Regions Error -1 to 0 dB FS Warning -2 to -1 dB FS OK <-2 dB FS				
Phase Type O Stereo O DIN Phase Scale Position Top	Phase Type Stereo DIN Phase Scale Position Top Top <li< td=""></li<>				

Figure 8-2: Audio Bar Graph Tab

8.3.1. Bar Graph Size

This parameter sets the vertical size of the level bar graphs.

Two sizes of bar graphs are available. The *Big* size is about $\frac{3}{4}$ of the screen height while the *Normal* size is about $\frac{1}{2}$ of the screen height.

8.3.2. Bars Opacity

This parameter sets the bar graph foreground opacity or how much video picture content will be visible through the bar graph backgrounds.

When set to the minimum value, very little of the bar graph colour will be visible over the video content. At the maximum value, very little of the background video will be visible through the bar graph.

8.3.3. Background Opacity

This parameter sets the bar graph background opacity or how much video picture content will be visible through the bar graph backgrounds.

When set to the minimum value, very little of the bar graph background colour will be visible over the video content. At the maximum value, very little of the background video will be visible through the bar graph.

8.3.4. Channel Pairs 1 and 2

For brevity in the manual, only Channel Pairs 1 and 2 parameters will be discussed.

8.3.4.1. Audio Level Mode

When set to Normal, stereo bar graphs are displayed.

When set to *Sum* + *Difference*, bar graph 1 is the absolute value of the sum of both channels and bar graph 2 displays the absolute value of the magnitude of the difference of the two signals.

8.3.4.2. Headroom

The *Headroom* is the level difference between a maximum amplitude signal that can be represented in the digital world (this is called 0 dB FS or 0 dB Full Scale) to a nominal, user defined operating level, represented in Decibels. In modern digital studios and broadcast stations this is on the order of 20 dB.

This parameter is used to position the 0 dB point for the VU and PPM meters (excluding AES/EBU ballistics mode that always uses 0 dB FS). For example, if you set this parameter to 15dB and input a signal that is -15 dB FS, then the bar graph top will be at 0dB. If you are in PPM mode with AES/EBU ballistics, then the meter will read -15dB. When you adjust this level, you are changing the 0dBr or program reference point on the bar graphs.

After you set the headroom and select the bar type/mode, you can adjust the bar graph coloured area sizes with the *Error* and *Warning* parameters.

8.3.4.3. Level Type

This parameter sets the bar graph to one of five basic types.

PPM: Peak Program Meter tracks the peaks of the audio content rather than the perceived loudness or the power content of the material.

PPM with peak hold: The peak hold feature allows the user to keep track of the audio peak. A floating mark is pushed up by audio peaks and is reset with menu command (see the "Clear Faults" menu).

VU: Volume Unit meter follows, approximately, the perceived loudness of human hearing.

VU with peak hold: The peak hold feature allows the user to keep track of the peak VU reading. A floating mark is pushed up by audio VU peaks and is reset with a menu command (see the "Clear Faults" menu).

VU with floating PPM: This mode displays both VU levels and PPM levels on the same bar graph. The VU level is indicated by the solid bar going up and down, while the PPM reading is indicated by a floating white bar. The scale displayed is a decibel scale with 0 corresponding to program reference level (for all modes except AES/EBU).

8.3.4.4. PPM Mode

This parameter selects one of four industry standard of Peak Program Meter (PPM) display modes.

When one of these modes is selected, a number of items are set to adhere with predefined industry standards. The items affected include; meter attack time, meter decay time, min level displayed, max level displayed, analog reference (100%) level and, in some instances, region colouring and phase graph representation. Table 8-1 illustrates the values set by the standards.

Mode	Attack Time	Decay Time	Ref. Level	Min Level	Max Level	Peak Output Level	Notes
DIN 45 406 (IRT Rec. 3/6)	10 ms	1.5 sec for 20 dB	6 dBu	-50 dB	5 dB	6 + headroom	 1 dB per div until –10 dB, logarithmic to bottom -50dB. Associated DIN phase correlation scale: both the same => 1 r, only 1 signal => 0 r, both out of phase => -1r.
BBC "IEC 128-10, type Ila, fast mode	10 ms	2.8 sec for 7 to 1	8 dBu	1 -12 dB	7 +12 dB	8 + headroom	# 6 on the scale is the reference level
Nordic N9	5 ms	1.7 sec for 20 dB	6 dBu	-42 dB	+12 dB	6 + headroom	
AES/EBU	1 sample period	1.5 sec for 20 dB	User defined	-60 dB	0 dB	User defined	100% reading is user definable. 0 dB corresponds to 0 dB FS.

Table 8-1: PPM Bar Graph Characteristics

Please Note: The phase correlation scale on the DIN type is different from our other phase indicators (*Sum* + *Difference* and phase bar graphs).

8.3.4.5. VU Range

This parameter selects the VU display range when VU modes are active. Most VU meters have two possible ranges. These are:

- Normal: +3 to –20dB
- **Extended:** +3 to -57dB

The bar graphs will be re-scaled to represent the selected range.

When using VU and BBC PPM mode, the VU scale is truncated to -6dB to match the scaling of BBC mode.

8.3.4.6. Level Scale Position

This parameter allows you to enable and position the level bar graph scale tick marks and the scale labels with respect to the bar itself. When off, there will not be any ticks or numerical labels while left or right will position them to the left or the right of the graphs respectively.

If a combination VU/PPM mode is selected, then "left" will select VU scale on the left, PPM scale on the right and "right" will select VU scale on the right and PPM scale on the left.

8.3.4.7. Coloured Regions

Each of the level bar graphs consists of three regions: the OK, warning and error regions. The *Coloured Regions* parameters allow you to select one of a group of standard colours, or choose your own custom colours for each of the regions. The controls for each region operate the same way so for simplicity only the controls for the OK region will be shown in the manual.

The colours of the various regions are defined by either three 8 bit R, G, B values or H, S, B values (hue, saturation, and brightness). If you choose one of the predefined colours (Figure 8-3), the card automatically sets the R, G, and B and H, S, and B values. If you choose a custom colour, you will be able to set the H, S, and B values (Figure 8-4) or R, G, and B values (Figure 8-5) independently to give you the desired colour.

Figure 8-3: Swatches Window

(🛓 Choose a Color
	Swatches HSB RGB
	R 0 G 0 B 0
	Preview Sample Text Sample Text Sample Text Sample Text
	OK Cancel <u>R</u> eset

Figure 8-4: HSB Window

<u></u>	Choose a C	olor					X
<u>S</u> w	ratches \ <u>H</u> SE	₿					
	Re <u>d</u>	0	85	170	255	0 🗘	
	Gree <u>n</u>	0	85	170	255	0 🗘	
	<u>B</u> lue	0	85	170	255	0 🗘	
Pre	view	_	Comple	Test Com	uple Test	-	
			Sample	Text Sall	ipie rext	_	
			Sample	Text Sam	nple Text		
		ОК	Ca	incel	<u>R</u> eset		

Figure 8-5: RBG Window

8.3.4.7.1. Setting the Bar Graph Error Region

The bar graph "Error" region is the area from clipping (0 dB FS) down to the level selected by this parameter. It is intended to tell the user when the audio signal is getting close to clipping.

Warning:

Some bar graph types (and ballistics) have this region defined. When you select one of these types, this value will automatically be set. After you choose the type, you can adjust this value to your desired level.

8.3.4.7.2. Setting the Bar Graph Warning Region

The bar graph "Warning" region is the area between the "OK" region and the "error" region. It is intended to indicate when the audio level is approaching the "error" region. This parameter sets the bottom of the "warning" region. Normally, it is set to the audio program level. The upper boundary of this region is always set with the "error" region control.

This value cannot be higher than the "error" region value. If the "error" region is lowered below the value of this parameter, the "warning" region will also be lowered.

Warning:

Some bar graph types (and ballistics) have this region defined. When you select one of these types, this value will automatically be set. After you choose the type, you can adjust this value to your desired level.

8.3.5. Phase Type

This parameter enables the user to select a phase type. There are two types of phase bar graphs available: one that has a focus of presenting the amount and L/R distribution of stereo content (STEREO), and one that presents in-phase/out-of-phase proportions (DIN).

8.3.6. Phase Scale Position

This parameter allows the user to position the phase bar graph scale tick marks and the scale labels with respect to the bar itself. When set to "None", there will not be any ticks or numerical labels while "Top" or "Bottom" will position them to the top or the bottom of the phase bar graph respectively.

8.4. AUDIO BAR GRAPH POSITIONS

🎟 192.168.12.3, 7736CEM [2]: Configurat	ion 🗗 🗗 🖾
Refresh 🧶 🧶 1.0 Apply 🎼 🗽 Status	Logger
Fault Traps \Video Controls \Window S Audio Settings \Audio Bar Graph Audio	ettings \{ General \ Bar Graph Positions \\ Fault Settings \{ Audio Channels \{ Fault Conditions \{ Video and SID \{ Fault Windows \}
Level Bar Graphs 1 and 2 Enable Off Vertical Horizontal 39 19	Level Bar Graphs 3 and 4 Enable Off Vertical Horizontal 39 19
Phase Bar Graphs 1 and 2 Enable Off Vertical Horizontal 39 19	Phase Bar Graphs 3 and 4 Enable Off • Vertical • Horizontal 39 19

Figure 8-6: Audio Bar Graph Positions Tab

8.4.1. Enable

This parameter enables the user to configure the on/off states of the level bar graph windows.

8.4.2. Setting the Horizontal Position of On Screen Windows

The Horizontal parameter sets the leftmost character position for the respective window.

8.4.3. Setting the Vertical Position of On Screen Windows

The Vertical parameter sets the top row for the respective window.

8.5. FAULT SETTINGS

5 192.168.12.3, 7736CEM [2]: Configur	ration		r q. X
Refresh 🧶 🧶 1.0 Apply 🎼 🖳 Sta	tus	Logger	
Fault Traps Video Controls Window Audio Settings Audio Bar Graph Audio	Settings \ General \ dio Bar Graph Positions \	Fault Settings \langle Audio Channels \langle Fault	Conditions \langle Video and SID \langle Fault Windows \rangle
Fault Levels and Durations			
Loss of Video Duration		50 frames	
Loss of Audio Duration		50 frames	
Audio Over Level		0.00 dB FS	
Audio Over Duration		50 samples	
Audio Silence Level		-20 dB FS	
Audio Silence Duration		25.0 sec	
Audio Phase Reversal Level	·····	0.50	
Audio Phase Reversal Duration		25.0 sec	
Audio Mono Threshold Level		0.50	
Audio Mono Duration		25.0 sec	
Loss of Closed Captioning Duration		102 sec	
Loss of Program Rating Duration		50 sec	
Picture Noise Level		10	
Picture Freeze Duration		2 frames	
Picture Black Duration		200 frames	

Figure 8-7: Fault Settings Tab

8.5.1. Loss of Video Duration

This parameter sets the duration, in number of consecutive frames of video, that video needs to disappear before the *Video error* fault condition exists.

This parameter is included so that you can have a few frames of missing/bad video before the fault occurs. This is useful to eliminate fault generation when upstream non-synchronous switching occurs.

8.5.2. Loss of Audio Duration

This parameter sets the duration, in number of consecutive frames of video, that audio needs to disappear before the *Loss of Audio* fault conditions exists.

This parameter is included so that you can have a few frames of missing/bad embedded or external audio before the fault occurs. This is useful to eliminate fault generation when upstream non-synchronous switching occurs.

8.5.3. Audio Over Level

This parameter sets the audio level over which there is considered to be over level. This value is expressed in dB full scale (FS) and can even be used to detect digital clipping. If set to 0 dB FS, then if 3 or more consecutive samples (set with the duration control) are at digital saturation (max or min), then the digital word length has been exceeded.

8.5.4. Audio Over Duration

This parameter sets the duration, in number of consecutive samples that are at or above the *Over level* before a fault condition exists.

Note that as longer durations are configured, you are eliminating the detection of higher frequency content over the set *Over level*.

8.5.5. Audio Silence Level

This parameter sets the audio level under which it is considered to be silent. This value is expressed in dB full scale (FS).

8.5.6. Audio Silence Duration

This parameter sets the amount of time the audio is silent in seconds before a fault occurs.

8.5.7. Audio Phase Reversal Level

This parameter sets the amount of phase difference before the audio is considered to be out of phase. This phase reversal is calculated by comparing the difference of the two channels to the average of the two. If a signal is always out of phase, then the difference between the two will be high compared to the average of the two. This corresponds to 1 in this control.

If there is only content on one of the channels (i.e. left only or right only), then the difference is equivalent to the average of the two channels. This corresponds to 0.5 in this control.

8.5.8. Audio Phase Reversal Duration

This parameter sets the period over which to analyze the audio content for phase reversal.

Note that conditions of silence are not included in this value. This means that if the audio is 50% quiet then it will take twice the period set with this control to detect a phase reversal condition.

8.5.9. Audio Mono Threshold Level

This parameter sets the level of L/R audio difference under which is considered mono.

0 corresponds to both channels being identical while 1 corresponds to both channels being exactly out of phase.

8.5.10. Audio Mono Duration

This parameter sets the duration of mono audio in seconds, which is considered a fault.

8.5.11. Loss of Closed Captioning Duration

This parameter sets the amount of time in seconds with no primary CC1 captions encoded, which is considered a fault

This fault condition will also be generated if the closed caption signal is missing on the input video.

8.5.12. Loss of Program Rating Duration

This parameter sets the amount of time in seconds with no program rating packet encoded in the Line 21 XDS data stream, which is considered a fault

This fault condition will also be generated if the closed caption signal is missing on the input video.

8.5.13. Picture Freeze Duration

This parameter sets duration of video activity under the *Picture noise level* that is considered a fault.

8.5.14. Picture Black Duration

This parameter sets duration, in seconds, of active picture content below 7 IRE that is considered a fault.

A Fault is generated when the video level within the active picture area falls below the preset black level (7 IRE) and remains for the specified duration.

8.6. AUDIO CHANNELS

🎟 192.168.12.3, 7736CE	M [2]: Configuration					
Refresh 🧶 🧶 1.0 App	oly 🔤 Status		Logger			
Fault Traps \ Video Con	ntrols \Window Settings \General \	X =				
Audio Settings \ Audio B	far Graph \setminus Audio Bar Graph Position	ns Fault Setting	Audio Channels	Fault Conditions	Video and SID (Fault Windows \
Channel 1						
Channel Output Select	CH 1 🔻					
Analog Output Level		5.00 dB				
Channel 2						
Channel Output Select	CH 1 -					
Analog Output Level		5.00 dB				
Channel 3						
Channel Output Select	CH 1 •					
Analog Output Level		5.00 dB				
Channel 4						
Channel Output Select	CH 1 -					
Analog Output Level		5.00 dB				

Figure 8-8: Audio Channels Tab

For brevity in the manual, only *Channel 1* parameters will be discussed.

8.6.1. Channel Output Select

Basic audio channel manipulation is possible with this parameter. Options include: CH 1, CH 2, CH 3, CH 4, (CH 1 + CH 2)/2, (CH 3 + CH 4)/2, and Mute.

Any input channel can be routed to any output channel. A mono mix of either L/R input pair can also be performed. Muting an output is also possible.

8.6.2. Analog Output Level

The analog output level is adjusted with this parameter. It has a range of approximately 12 dB with 1/10 dB resolution. The displayed value is the analog output level (dBu) corresponding to a 0dB FS digital input signal.

8.7. FAULT CONDITIONS

🎟 192.168.12.3, 7736CEM [2]: Configuration						
Refresh 🦣 🦣 1.0 Apply 🎼 🔤 Status	Logger					
Fault Traps Video Controls Window Settings General						
Audio Settings \ Audio Bar Graph \ Audio Bar Graph Positions \ Fault Settings \ Audio Channels \ Fault Conditions \ Video and SID \ Fault Window						
Fault Condition 1	Fault Condition 2					
Mode Oisable Enable	Mode Obisable Enable					
Message (15 char. max)	Message (15 char. max)					
Duration O Until Res O Number of frames	Duration O Until Res O Number of frames					
50 frames	50 frames					
Loss of Video	Loss of Video					
Genlock Invalid Loss of Program Rating	Genlock Invalid Loss of Program Rating					
Phase Reversal 1 and 2 Loss of Closed Captioning	Phase Reversal 1 and 2 Loss of Closed Captioning					
Phase Reversal 3 and 4 Picture Freeze	Phase Reversal 3 and 4 Picture Freeze					
Audio Over 1 and 2 Picture Black	Audio Over 1 and 2 Picture Black					
Audio Over 3 and 4 Loss of Audio 1 and 2	Audio Over 3 and 4 Loss of Audio 1 and 2					
Audio Silence 1 and 2 Loss of Audio 3 and 4	Audio Silence 1 and 2 Loss of Audio 3 and 4					
Audio Silence 3 and 4	Audio Silence 3 and 4					
Audio Mono 1 and 2	Audio Mono 1 and 2					
Audio Mono 3 and 4	Audio Mono 3 and 4					
Loss of VITC	Loss of VITC					

Figure 8-9: Fault Conditions Tab

For brevity in the manual, only Fault Condition 1 parameters will be discussed.

8.7.1. Mode

This parameter sets whether the fault message will be displayed when the fault condition is active.

When enabled, the fault message will be displayed until the condition is reset. When disabled, it will never be displayed.

8.7.2. Message

This parameter sets the message to display when the fault condition is active. The text of the message can be changed.

8.7.3. Duration

This parameter sets how long the fault condition will be held. The fault display will be displayed as long as the fault condition is active and the *Fault Mode* is set to *Enable*. The fault condition can either be held until the user clears the condition or until a programmable timer expires.

8.7.4. Determining What Items Will Generate the Fault Condition

This section provides a list of items that may generate a fault condition. Use the toggle switch to travel up and down this list and the pushbutton to enable or disable the item from the fault condition criteria. Enabled items will be shown with a check mark.

A fault condition will exist when any of the selected items occurs.

Loss of Video	Video absent or wrong standard
Genlock Invalid	Reference absent or wrong standard
Phase Reversal 1 and 2	Audio 1 and 2 out of phase
Phase Reversal 3 and 4	Audio 3 and 4 out of phase
Audio Over 1 and 2	Audio 1 or 2 over level
Audio Over 3 and 4	Audio 3 or 4 over level
Audio Silence 1 and 2	Audio 1 and 2 silent
Audio Silence 3 and 4	Audio 3 and 4 silent
Audio Mono 1 and 2	Audio 1 and 2 mono
Audio Mono 3 and 4	Audio 3 and 4 mono
Loss of VITC	VITC absent
Loss of Source ID	SID absent
Loss of Program Rating	Program rating absent
Loss of Closed Captioning	Primary CC1 Closed captioning absent
Picture Freeze	No activity above preset noise level in active picture
Picture Black	No active picture above 7 IRE
Loss of Audio 1 and 2	Audio 1 and 2 absent
Loss of Audio 3 and 4	Audio 3 and 4 absent

8.8. VIDEO AND SID

📟 192.168.12.3, 7736CEM	[2]: Configuration						- <u>-</u> 2
Refresh 🧶 🧶 1.0 Apply	Status		Log	gger			
Fault Traps \Video Control	ls \ Window Settings \ General \						
Audio Settings \ Audio Bar (Graph \setminus Audio Bar Graph Positions \setminus F	Fault Set	tings \ Audio Cha	annels \ Fault	Conditions	Video and SID 👔	Fault Windows \
Video Settings Video Standard Loss Of Video Genlock Source Free-Running Frequency	 NTSC 525 ○ PAL 625 Freeze ○ Black Reference In ▼ 	50	V Phase 525 V Phase 625 V Delay	ase	50	50 50	
Fine Phase 525 Fine Phase 625		50	H Phase 525			50	
NTSC Color Phase			H Phase 625 H Delay		50	50	
Video Lock Mode	Clean/Asynchronous -						
VITC Line Number VITC 525 VITC 625		32 32					
PESA Line Number PESA 525 PESA 625		21 22					
SID Settings Default SID Mode Default SID Message	O Disable O Enable	chars.)					

Figure 8-10: Video and SID Tab

8.8.1. Video Standard

Warning: If you power up the card in a standard opposite to the standard that is being applied as the genlock source, the OSD will not be readable to change the standard. You must remove the genlock signal change the standard, then re-apply the genlock.

In *Auto* mode, the Genlock reference video standard is used to determine what standard to use. If Genlock video is not present, the input video standard is used. PAL-M genlock is not supported; *Auto* mode is not available for PAL-M operation. If a PAL-M signal is applied, it will be mistaken as NTSC.

8.8.2. Loss of Video

The user can either have the output video go to black or freeze the last good video picture at the input with this control.

8.8.3. Genlock Source

This parameter allows you to select the reference video for the frame synchronizer output timing. The reference may either be an externally supplied colour black or you may use the input video as a reference. Optionally, the synchronizer can be free-run if the "*none*" option is selected.

8.8.4. Free-Running Frequency

This parameter allows you to calibrate the free-running frequency of the on-board Voltage Controlled crystal Oscillator (VCXO). This oscillator provides the time-base when either operating without a reference input (free-running) or when running with a reference and the reference video is removed.

To calibrate the free-running frequency, use this or a similar procedure:

- Turn off genlocking with the "Genlock source" control or remove reference video from the reference input. Wait for the VCXO to stabilize at its free-running frequency.
- Apply the composite analog monitoring output video to a vector scope that is externally referenced to the signal (usually plant reference black) that you are trying to frequency match.
- Adjust this control until the vectors spin slowly.
- Turn genlocking back on or apply reference video.

8.8.5. Fine Phase 525

With this parameter, you can set the horizontal fine phase timing of the output video with respect to the Genlock when operating in NTSC/525 or PAL-M/525 video mode and locking to the reference input (this control is not available when locking to the input video). Increasing the value will delay the output video. There is approximately 250 ns range on this control.

Warning: For a set output horizontal phase, there are a few *fine phase/H phase* combinations that will achieve the same position. For best results, set this control to 0, set the H phase to get within 37ns of the desired position, then adjust this control to get closer.

8.8.6. Fine Phase 625

With this parameter, you can set the horizontal fine phase timing of the output video with respect to the Genlock when operating in PAL/625 video mode and locking to the reference input (this control is not available when locking to the input video). Increasing the value will delay the output video. There is approximately 250 ns range on this control.

Warning: For a set output horizontal phase, there are a few *fine phase/H phase* combinations that will achieve the same position. For best results, set this control to 0, set the H phase to get within 37ns of the desired position, then adjust this control to get closer.

8.8.7. NTSC Colour Phase

With this parameter, you can set the colour field phase of the output video with respect to the Genlock reference input when operating in NTSC/525 video mode.

The correct value for this register will depend on the reference to output video phase. If the output video is later than the reference video, but less than one field, then setting this control to "0" will make the output video have the same colour field relationship to the genlock.

8.8.8. PAL-B Colour Phase

With this parameter, you can set the colour field phase of the output video with respect to the Genlock reference input when operating in PAL-B/625 video mode.

The correct value for this register will depend on the reference to output video phase. If the output video is later than the reference video, but less than one field, then setting this control to "0" will make the output video have the same colour field relationship to the genlock.

8.8.9. Video Lock Mode

This parameter configures how the input video locks when upstream video is switched or disturbed. *Clean/Asynchronous* mode will freeze on any H or V mistiming while *Fast/Synchronous* mode will assume an upstream synchronous switch and not freeze until the video has been missing for a number of lines.

8.8.10. VITC 525

This parameter sets the VBI line number that contains the VITC information when operating in NTSC video mode.

If the VITC contains Source ID (SID) information, the card will automatically decode it, and turn on the SID window if the user has enabled this window.

If the wrong line number is set, no time code (or SID) will be decoded.

8.8.11. VITC 625

This parameter sets the VBI line number that contains the VITC information when operating in PAL-B video mode.

If the VITC contains Source ID (SID) information, the card will automatically decode it, and turn on the SID window if the user has enabled this feature.

If the wrong line number is set, no time code (or SID) will be decoded.

8.8.12. PESA 525

This parameter sets the VBI line number that contains the PESA SID information when operating in NTSC video mode. If the wrong line number is set, no SID will be decoded.

8.8.13. PESA 625

This parameter sets the VBI line number that contains the PESA SID information when operating in PAL-B video mode. If the wrong line number is set, no SID will be decoded.

8.8.14. Default SID Mode

This parameter determines if the Default SID message will be displayed in the SID window when there is no incoming source ID on the VITC.

Set to Disable to blank the SID window when there is no incoming source ID.

Set to *Enable* to show the Default SID message in the SID window when there is no incoming source ID. The SID window must also be turned On to display the default SID message.

8.8.15. Default SID Message

This parameter sets the message that will be displayed in the SID window when there is no incoming source ID on the VITC. The text of the message can be changed.

8.9. FAULT WINDOWS

🎟 192.168.12.3, 7736CEM [2]: Config	uration		5° 🖉 🗹
Refresh 🧶 🧶 1.0 Apply 🎼 🖳 S	Status	Logger	
Fault Traps \Video Controls \Windo	w Settings \ General \	V	
Audio Settings \ Audio Bar Graph \ A	udio Bar Graph Positions \ Fault Setti	ngs \setminus Audio Channels \setminus Fault Conditions \setminus \	/ideo and SID [Fault Windows]
Fault Window Attributes	hadren a		
Text			
Background Color Black	▼		
Text Opacity	50		
Background Opacity	50		
Fault Window 1	Fault Window 2		
Vertical	Vertical		
Horizontal 20	Horizontal 39		
19	19		
	L		
Size	Size		
	O Normal O Big		
Blink	Blink		
O Disable O Enable	O Disable O Enable		
O Normal O Big Blink Disable Enable	 Normal Big Blink Disable Enable 		

Figure 8-11: Fault Windows Tab

8.9.1. Text

The text displayed in the fault window may either have a background box or if too much video information is hidden, it may be inserted with a thin black outline.

8.9.2. Background Colour

This parameter enables the user to select the desired background colour around the text in the fault windows.

8.9.3. Text Opacity

This parameter sets the fault window text opacity or how much video picture content will be visible through the text characters.

When set to the minimum value, very little of the white window text will be visible over the video content. At the maximum value, very little of the background video will be visible through the white window text.

8.9.4. Background Opacity

This parameter sets the fault window background opacity or how much video picture content will be visible through the window background.

When set to the minimum value, very little of the window background colour will be visible over the video content. At the maximum value, very little of the background video will be visible through the window background.

8.9.5. Setting the Horizontal Position of the Fault Windows

For brevity in the manual, only *Fault Window 1* will be discussed.

The Horizontal parameter sets the leftmost character position for the respective window.

When you select this parameter, the screen text will disappear and a box of the correct size will appear. Move it around to the desired position with the sliders.

8.9.6. Setting the Vertical Position of the Fault Windows

The Vertical parameter sets the top row for the respective window.

When you select this parameter, the screen text will disappear and a box of the correct size will appear. Move it around to the desired position with the sliders.

8.9.7. Setting the Fault Window Font Size

This parameter sets the font size of the program rating window.

When it is set to Big the font size will be double the height and width of the Normal font size.

8.9.8. Setting the Blink Mode of the Fault Windows

This parameter determines if the Fault 1 window will blink or be on solid when the fault is active.

When it is set to *Disable* the fault window will be on steady when it is active.

When it is set to *Enable* the fault window will blink when it is active.

8.10. FAULT TRAPS

The **Fault Traps** tab, as illustrated in Figure 8-12, allows the user to enable or disable traps and view trap status. To enable a particular trap, simply click the box located beside each trap so that a check-mark appears. When a check-mark is present, the trap is enabled. When a check-mark is not present, the trap is disabled.

The *Trap Status* section displays whether a fault is active or not. If the box is green, then the corresponding trap is not active. If the box is red, then the corresponding trap is active.

📾 192.168.12.3, 7736CEM [2]: Configuration								
Refresh 🧶 🧶 1.0 Apply 🎼	🖉 Status		Logger					
Fault Traps Video Controls Window Settings General								
Audio Settings \ Audio Bar Graph	h $ig angle$ Audio Bar Graph Positions $ig angle$ Fa	ult Settings	Audio Channels	Fault Conditions	Video and SID	Fault Windows		
Trap Enable		_ Trap Sta	tus			7		
Loss of Video	Loss of Program Rating	Loss	of Video	Loss of Pro	ogram Rating			
Genlock Invalid	Loss of Closed Captioning	Gen	lock Invalid	Loss of Clo	osed Captioning			
Phase Reversal 1 and 2	Picture Freeze	Pha:	se Reversal 1 and 2	Picture Free	eze			
Phase Reversal 3 and 4	Picture Black	Pha:	se Reversal 3 and 4	Picture Bla	ck			
Audio Over 1 and 2	Loss of Audio 1 and 2	Audi	o Over 1 and 2	Loss of Au	dio 1 and 2			
Audio Over 3 and 4	Loss of Audio 3 and 4	Audi	o Over 3 and 4	Loss of Au	dio 3 and 4			
Audio Silence 1 and 2		Audi	o Silence 1 and 2					
Audio Silence 3 and 4		Audi	o Silence 3 and 4					
Audio Mono 1 and 2		Audi	o Mono 1 and 2					
Audio Mono 3 and 4		Audi	o Mono 3 and 4					
Loss of VITC		Loss	of VITC					
Loss of Source ID		Loss	of Source ID					
						_		

Figure 8-12: Fault Traps Tab

8.11. VIDEO CONTROLS

🎟 192.168.12.3, 7736CEM [2]: Configuration		rk⊠_ ⊠
Refresh 🥒 🧶 1.0 Apply	Katus	Logger	
Fault Traps Video Controls Audio Settings \ Audio Bar G	s \\ Window Settings \\ General \\ Graph \\ Audio Bar Graph Positions \\ Fault Settings	Audio Channels \ Fault Condit	ions \langle Video and SID \langle Fault Windows \rangle
Video Processing		1	
NTSC Setup Pedestal	◯ Off ◯ On		
Line 21 Setup Pedestal	Off		
Composite Display Mode	Color		
Video Level	50		
Hue	22.50 degre		
Saturation	50		
Contrast	31		
Brightness	31		
H Blanking	Narrow		
VBI Processing	Blank		
Y Filter Selection	Wide Bandwidth 💌		
Wideband Y Frequency Response	6		
Chroma Filter Selection	650 kHz 👻		

Figure 8-13: Video Controls Tab

8.11.1. NTSC Setup Pedestal

Composite NTSC analog video may have a 7.5 IRE pedestal while 4:2:2 SDI video does not. This control, when set to *On*, will add the pedestal and re-scale the video accordingly. The setup pedestal should not be present on composite video when operating in Japan.

8.11.2. Line 21 Setup Pedestal

Closed captioning has been defined to NOT have a 7.5 IRE pedestal, but it is placed on the first active line of video where there may be a pedestal. The upstream closed captioning encoder should not have generated a setup pedestal. When encoding composite video with properly keyed captioning, a pedestal must not be generated.

This parameter, when set to *Off*, will not create the 7.5 IRE pedestal on line 21. This is the default state for properly generated captioning.

When set to *On*, the 7.5 IRE pedestal will be generated on line 21. Use this state when there are no input captions.

Note: The On condition will only take effect if the NTSC Setup Pedestal is set to On.

Blank is used to remove captioning from line 21.

Note: The captions are *Blank*ed from the main, high quality, output only. This will allow the monitoring of upstream captioning on the *monitoring output* even when it is not desirable to have them passed downstream on the program video.

8.11.3. Composite Display Mode

If monochrome operation is desired on the composite output, colour may be turned off with this parameter.

8.11.4. Video Level

This parameter allows the user to adjust the output level of the analog video (including sync). When set to 0, the nominal output video level will be 140 IRE.

Warning: The brightness and contrast controls will also affect video level. Set this control by measuring sync level rather than video level. After calibrating the brightness and contrast, come back to this control and verify the video level.

8.11.5. Hue

This parameter allows the user to adjust the Hue of the analog video in steps of 0.5 degrees.

8.11.6. Saturation

This parameter allows the user to adjust the saturation level of the analog video.

8.11.7. Contrast

This parameter allows the user to adjust the contrast (white level) of the analog video.

8.11.8. Brightness

This parameter allows the user to adjust the brightness (black level) of the analog video.

8.11.9. H Blanking

When set to *Narrow*, the H blanking will be 10.7µsec wide. When set to *Wide*, the H blanking will be 11.2µsec.

8.11.10. VBI Processing

The Vertical Blanking Interval may be passed to the component outputs or may be blanked (removed) to not interfere with display of the image.

8.11.11. Y Filter Selection

The Y channel may be filtered with a standard composite filter or may be wideband. When *Wide Bandwidth* is selected, the following control allows the frequency response to be adjusted.

8.11.12. Wideband Y Frequency Response

When the Y Filter Selection parameter is set to Wide Bandwidth, this controls a set of high frequency response curves.

Note: If you want to observe the filtering, supply a component multiburst or H sweep test signal.

8.11.13. Chroma Filter Selection

The Cb and Cr channels may be filtered with any of these bandwidths.

Note: If you want to observe the filtering, supply a component multiburst or H sweep test signal.

8.12. WINDOW SETTINGS

🎟 192.168.12.3, 7736CEM [2]: Configura	ition		
Refresh 🦣 🦣 1.0 Apply 🎼 🎼 Statu	15	Logger	
Fault Traps \Video Controls \Window S Audio Settings \Audio Bar Graph \Audio	Settings \General \ o Bar Graph Positions \Fault Se	ttings \ Audio Channels \ Fault Cond	iitions \setminus Video and SID \setminus Fault Windows \setminus
All Text Windows Text White on bac Background Color Black Text Opacity Background Opacity	ckground		
Status Window Vertical Horizontal 39 19 Enable Off Mode O Normal O Fault	Vertical Horizontal 39 19 Inable Off ize O Normal O Big	Program Rating Window Vertical Horizontal 39 19 Enable Off Size O Normal O Big	
XDS Window Vertical Horizontal 39 19 Enable Off Enable S	Vertical Horizontal 39 19 inable Off Iteration Normal Off Big	Closed Captioning Window Enable Off	

Figure 8-14: Window Settings Tab

8.12.1. Text

The text displayed in the text window may either have a background box or if too much video information is hidden, it may be inserted with a thin black outline.

8.12.2. Background Colour

This parameter enables the user to select the desired background colour around the text in the text windows.

8.12.3. Text Opacity

This control sets the text window text opacity or how much video picture content will be visible through the text characters.

When set to the minimum value, very little of the white window text will be visible over the video content. At the maximum value, very little of the background video will be visible through the white window text.

8.12.4. Background Opacity

This control sets the text window background opacity or how much video picture content will be visible through the window background.

When set to the minimum value, very little of the window background colour will be visible over the video content. At the maximum value, very little of the background video will be visible through the window background.

8.12.5. Status Window

8.12.5.1. Setting the Horizontal Position of the Status Window

The Horizontal parameter sets the leftmost character position for the respective window.

When you select this parameter, the screen text will disappear and a box of the correct size will appear. Move it around to the desired position with the toggle switch. Press the pushbutton when done.

8.12.5.2. Setting the Vertical Position of the Status Window

The Vertical parameter sets the top row for the respective window.

When you select this parameter, the screen text will disappear and a box of the correct size will appear. Move it around to the desired position with the toggle switch. Press the pushbutton when done.

8.12.5.3. Mode

This parameter determines the display properties of the status window.

When it is set to Normal the status window will use the text window properties.

When it is set to *Fault*, items in the status window that have been selected for fault generation using the *Fault Traps* tab will use the *Fault window* properties when the fault is active. If the status window is enabled by either Fault 1 or Fault 2 triggering, then only the faults that actually enabled the window will be shown in the *Fault window* properties. The rest of the items on the status window will be shown in the *Text window* properties.

8.12.6. VITC Window

For brevity in the manual, only the VITC Window parameters will be discussed.

8.12.6.1. Setting the Horizontal Position of the VITC Window

The Horizontal parameter sets the leftmost character position for the respective window.

8.12.6.2. Setting the Vertical Position of the VITC Window

The Vertical parameter sets the top row for the respective window.

8.12.6.3. Size

This parameter sets the font size of the source VITC window.

When it is set to Big, the font size will be double the height and width of the Normal font size.

8.13. GENERAL

192.168.12.3, 7736CEM [2]:	Configuration					- <u>5</u> 2
Refresh 🦣 🦣 1.0 Apply 🎼 🖳 Status			Logger 📗			
Fault Traps Video Controls Window Settings General						
🗍 Audio Settings 🛛 Audio Bar Gra	ph 🔪 Audio Bar Graph Positions	⟨ Fault Settings ⟩	Audio Channels	Fault Conditions	Video and SID	Fault Windows
Misc Controls Frame Status Trigger Card Type	None -]				

Figure 8-15: General Tab

8.13.1. Frame Status Trigger

The 7700 frame has a global status line that any card can pull active. With this control, you can select the condition for the card to cause the line to go active. Also included on the frame status signal is card power supply monitoring. This is derived with hardware and cannot be disabled from the status signal.

If it is desired to use this feature, the frame status jumper J3 (located near the card extractor) must also be set to the *On* position. See section 9.2

The Red *Local Fault* LED will be On when the global status line is active regardless of the position of jumper J3.

8.13.2. Card Type

This parameter displays the card type currently being used.

9. JUMPERS

9.1. TERMINATION JUMPERS

REF TERM: The REF TERM jumper J22 located on the rear of the card near the white multi-pin connectors, selects the reference video termination impedance. Either 75Ω or a high-Z ($27k\Omega$) termination impedance can be selected by placing the jumper in the "75" (top justified) or "HI-Z" (bottom justified) positions, respectively.

9.2. SELECTING WHETHER LOCAL FAULTS WILL BE MONITORED BY THE GLOBAL FRAME STATUS

FRAME STATUS: The FRAME STATUS jumper J3 located at the front of the module determines whether local faults (as shown by the Local Fault indicator) will be connected to the 7700FR frame's global status bus.

To monitor faults on this module with the frame status indicators (on the PS FRAME STATUS LED's and on the Frame's Fault Tally output) install this jumper in the ON position. (Default) When this jumper is moved to the OFF position, local faults on this module will not be monitored.

The *Frame stat trigger* menu item on the *GPO configuration* menu is used to configure whether *Fault condition 1* or *Fault condition 2* will assert the frame status fault line. Power supply faults will always assert the frame status fault line when J3 is installed in the ON position.

9.3. CONFIGURING THE MODULE FOR FIRMWARE UPGRADES

The following method can be used to upgrade the firmware in the CEM card. You can also use the *UPGRADE* menu item located on the *UTILITIES* menu to upgrade the firmware.

UPGRADE: The UPGRADE jumper J2, is used when firmware upgrades are being done to the module. For normal operation it should be installed in the *RUN* position. See the *Upgrading Firmware* chapter in the front of the binder for more information.

To upgrade the firmware in the module unit pull it out of the frame. Move Jumper J2 into the *UPGRADE* position. Install the Upgrade cable provided (located in the vinyl pouch in the front of this manual) onto header J1 at the card edge. Re-install the module into the frame. Run the upgrade as described in the *Upgrading Firmware* chapter in the front of the binder. Once the upgrade is completed, remove the module from the frame, move J2 into the *RUN* position, remove the upgrade cable and re-install the module. The module is now ready for normal operation.